Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions
dc.authorscopusid | 56076051200 | |
dc.authorscopusid | 35226550700 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 7004348948 | |
dc.authorwosid | Saker, Samir/A-5499-2008 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Khalil, Hammad/E-8625-2018 | |
dc.contributor.author | Khalil, Hammad | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Khan, Rahmat Ali | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Saker, Samir H. | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2018-09-26T13:21:32Z | |
dc.date.available | 2018-09-26T13:21:32Z | |
dc.date.issued | 2016 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Khalil, Hammad] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Pakistan; [Khalil, Hammad] Univ Malakand, Dept Math, POB 18000, Dir Lower, Khybarpukhtunkh, Pakistan; [Khan, Rahmat Ali] Univ Malakand, Fac Sci, Dir Lower, Khybarpukhtunkh, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Saker, Samir H.] Mansoura Univ, Dept Math, Al Mansurah, Muhafazat Ad Da, Egypt | en_US |
dc.description.abstract | This paper investigates a computational method to find an approximation to the solution of fractional differential equations subject to local and nonlocal m-point boundary conditions. The method that we will employ is a variant of the spectral method which is based on the normalized Bernstein polynomials and its operational matrices. Operational matrices that we will developed in this paper have the ability to convert fractional differential equations together with its nonlocal boundary conditions to a system of easily solvable algebraic equations. Some test problems are presented to illustrate the efficiency, accuracy, and applicability of the proposed method. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Khalil, H...et al. (2016). Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions. Advance in Difference Equations. http://dx.doi.org/ 10.1186/s13662-016-0910-7 | en_US |
dc.identifier.doi | 10.1186/s13662-016-0910-7 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.scopus | 2-s2.0-84978058305 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-016-0910-7 | |
dc.identifier.wos | WOS:000391464900001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springeropen | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Bernstein Polynomials | en_US |
dc.subject | Operational Matrices | en_US |
dc.subject | M-Point Boundary Conditions | en_US |
dc.subject | Fractional Differential Equations | en_US |
dc.title | Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions | tr_TR |
dc.title | Approximate Solution of Linear and Nonlinear Fractional Differential Equations Under M-Point Local and Nonlocal Boundary Conditions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |