Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions

dc.authorscopusid 56076051200
dc.authorscopusid 35226550700
dc.authorscopusid 7005872966
dc.authorscopusid 7004348948
dc.authorwosid Saker, Samir/A-5499-2008
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Khalil, Hammad/E-8625-2018
dc.contributor.author Khalil, Hammad
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Khan, Rahmat Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Saker, Samir H.
dc.contributor.other Matematik
dc.date.accessioned 2018-09-26T13:21:32Z
dc.date.available 2018-09-26T13:21:32Z
dc.date.issued 2016
dc.department Çankaya University en_US
dc.department-temp [Khalil, Hammad] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Pakistan; [Khalil, Hammad] Univ Malakand, Dept Math, POB 18000, Dir Lower, Khybarpukhtunkh, Pakistan; [Khan, Rahmat Ali] Univ Malakand, Fac Sci, Dir Lower, Khybarpukhtunkh, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Saker, Samir H.] Mansoura Univ, Dept Math, Al Mansurah, Muhafazat Ad Da, Egypt en_US
dc.description.abstract This paper investigates a computational method to find an approximation to the solution of fractional differential equations subject to local and nonlocal m-point boundary conditions. The method that we will employ is a variant of the spectral method which is based on the normalized Bernstein polynomials and its operational matrices. Operational matrices that we will developed in this paper have the ability to convert fractional differential equations together with its nonlocal boundary conditions to a system of easily solvable algebraic equations. Some test problems are presented to illustrate the efficiency, accuracy, and applicability of the proposed method. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Khalil, H...et al. (2016). Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions. Advance in Difference Equations. http://dx.doi.org/ 10.1186/s13662-016-0910-7 en_US
dc.identifier.doi 10.1186/s13662-016-0910-7
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84978058305
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-016-0910-7
dc.identifier.wos WOS:000391464900001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Bernstein Polynomials en_US
dc.subject Operational Matrices en_US
dc.subject M-Point Boundary Conditions en_US
dc.subject Fractional Differential Equations en_US
dc.title Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions tr_TR
dc.title Approximate Solution of Linear and Nonlinear Fractional Differential Equations Under M-Point Local and Nonlocal Boundary Conditions en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: