Final Value Problem for Nonlinear Time Fractional Reaction-Diffusion Equation With Discrete Data
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Tran Ngoc Thach | |
| dc.contributor.author | O'Regan, Donal | |
| dc.contributor.author | Nguyen Huu Can | |
| dc.contributor.author | Nguyen Huy Tuan | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-04-27T13:35:18Z | |
| dc.date.accessioned | 2025-09-18T14:09:52Z | |
| dc.date.available | 2022-04-27T13:35:18Z | |
| dc.date.available | 2025-09-18T14:09:52Z | |
| dc.date.issued | 2020 | |
| dc.description | Nguyen Huy, Tuan/0000-0002-6962-1898; Nguyen, Huu-Can/0000-0001-6198-1015 | en_US |
| dc.description.abstract | In this paper, we study the problem of finding the solution of a multi-dimensional time fractional reaction-diffusion equation with nonlinear source from the final value data. We prove that the present problem is not well-posed. Then regularized problems are constructed using the truncated expansion method (in the case of two-dimensional) and the quasi-boundary value method (in the case of multi-dimensional). Finally, convergence rates of the regularized solutions are given and investigated numerically. (C) 2020 Elsevier B.V. All rights reserved. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.description.sponsorship | Vietnam National Foundation for Science and Technology Development (NAFOSTED) [101.02-2019.09] | en_US |
| dc.description.sponsorship | The first author gratefully acknowledges stimulating discussions with Dr Yavar Kian. The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improve the quality of our paper. This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. | en_US |
| dc.identifier.citation | Tuan, Nguyen Huy...et al. (2020). "Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data", Journal of Computational and Applied Mathematics, Vol. 376. | en_US |
| dc.identifier.doi | 10.1016/j.cam.2020.112883 | |
| dc.identifier.issn | 0377-0427 | |
| dc.identifier.issn | 1879-1778 | |
| dc.identifier.scopus | 2-s2.0-85082469774 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cam.2020.112883 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13516 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Reaction-Diffusion Equation | en_US |
| dc.subject | Regularization Method | en_US |
| dc.subject | Backward Problem | en_US |
| dc.subject | Nonlinear Source | en_US |
| dc.subject | Discrete Data | en_US |
| dc.title | Final Value Problem for Nonlinear Time Fractional Reaction-Diffusion Equation With Discrete Data | en_US |
| dc.title | Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Nguyen Huy, Tuan/0000-0002-6962-1898 | |
| gdc.author.id | Nguyen, Huu-Can/0000-0001-6198-1015 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 17347203900 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57204430456 | |
| gdc.author.scopusid | 36049459000 | |
| gdc.author.scopusid | 57216298181 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Nguyen, Tuan/E-3617-2019 | |
| gdc.author.wosid | Tran, Thach/E-6127-2019 | |
| gdc.author.wosid | O'Regan, Donal/I-3184-2015 | |
| gdc.author.wosid | Nguyen, Huu-Can/R-4820-2018 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Nguyen Huy Tuan] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Tran Ngoc Thach] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam; [Tran Ngoc Thach] Vietnam Natl Univ, Ho Chi Minh City, Vietnam; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland; [Nguyen Huu Can] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 376 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3013884870 | |
| gdc.identifier.wos | WOS:000526110600019 | |
| gdc.openalex.fwci | 1.56629565 | |
| gdc.openalex.normalizedpercentile | 0.89 | |
| gdc.opencitations.count | 38 | |
| gdc.plumx.crossrefcites | 39 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 52 | |
| gdc.scopus.citedcount | 52 | |
| gdc.wos.citedcount | 47 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |