Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On Shifted Jacobi Spectral Approximations For Solving Fractional Differential Equations

dc.authorid Doha, Eid/0000-0002-7781-6871
dc.authorscopusid 6602467804
dc.authorscopusid 14319102000
dc.authorscopusid 7005872966
dc.authorscopusid 38861466200
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Doha, Eid/L-1723-2019
dc.authorwosid Ezz-Eldien, Samer/Agk-8059-2022
dc.authorwosid Bhrawy, Ali/D-4745-2012
dc.contributor.author Doha, E. H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, D.
dc.contributor.author Ezz-Eldien, S. S.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-05-03T20:53:31Z
dc.date.available 2020-05-03T20:53:31Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Doha, E. H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, A. H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Ezz-Eldien, S. S.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt en_US
dc.description Doha, Eid/0000-0002-7781-6871 en_US
dc.description.abstract In this paper, a new formula of Caputo fractional-order derivatives of shifted Jacobi polynomials of any degree in terms of shifted Jacobi polynomials themselves is proved. We discuss a direct solution technique for linear multi-order fractional differential equations (FDEs) subject to nonhomogeneous initial conditions using a shifted Jacobi tau approximation. A quadrature shifted Jacobi tau (Q-SJT) approximation is introduced for the solution of linear multi-order FDEs with variable coefficients. We also propose a shifted Jacobi collocation technique for solving nonlinear multi-order fractional initial value. problems. The advantages of using the proposed techniques are discussed and we compare them with other existing methods. We investigate some illustrative examples of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. (C) 2013 Elsevier Inc. All rights reserved. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.amc.2013.01.051
dc.identifier.endpage 8056 en_US
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.issue 15 en_US
dc.identifier.scopus 2-s2.0-84875460922
dc.identifier.scopusquality Q1
dc.identifier.startpage 8042 en_US
dc.identifier.uri https://doi.org/10.1016/j.amc.2013.01.051
dc.identifier.volume 219 en_US
dc.identifier.wos WOS:000318051700014
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 80
dc.subject Multi-Term Fractional Differential Equations en_US
dc.subject Nonlinear Fractional Initial Value Problems en_US
dc.subject Spectral Methods en_US
dc.subject Shifted Jacobi Polynomials en_US
dc.subject Jacobi-Gauss-Lobatto Quadrature en_US
dc.subject Caputo Derivative en_US
dc.title On Shifted Jacobi Spectral Approximations For Solving Fractional Differential Equations tr_TR
dc.title On Shifted Jacobi Spectral Approximations for Solving Fractional Differential Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 75
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: