Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines
dc.authorid | Ghaffar, Abdul/0000-0002-5994-8440 | |
dc.authorid | Khalid, Aasma/0000-0003-4918-9732 | |
dc.authorscopusid | 56241158200 | |
dc.authorscopusid | 57220518546 | |
dc.authorscopusid | 57211083270 | |
dc.authorscopusid | 56715663200 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Naeem, Muhammad/Jsk-6586-2023 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Nisar, Kottakkaran/F-7559-2015 | |
dc.authorwosid | Ghaffar, Abdul/Aax-3036-2020 | |
dc.authorwosid | Khalid, Aasma/Aao-4942-2021 | |
dc.contributor.author | Khalid, Aasma | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Ghaffar, Abdul | |
dc.contributor.author | Naeem, M. Nawaz | |
dc.contributor.author | Nisar, Kottakkaran Sooppy | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2023-01-04T08:30:29Z | |
dc.date.available | 2023-01-04T08:30:29Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Khalid, Aasma] Govt Coll Women Univ Faisalabad, Dept Math, Faisalabad 38023, Pakistan; [Ghaffar, Abdul] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Naeem, M. Nawaz] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38023, Pakistan; [Nisar, Kottakkaran Sooppy] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Ghaffar, Abdul] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan | en_US |
dc.description | Ghaffar, Abdul/0000-0002-5994-8440; Khalid, Aasma/0000-0003-4918-9732 | en_US |
dc.description.abstract | This paper describes the exceptionally precise results of 6th-order and 8th-order nonlinear boundary-value problems(BVPs). Cubic-Nonpolynomial spline(CNPS) and Cubic-polynomial spline(CNPS) are utilized to solve such types of BVPs. We develop the class of numerical techniques for a particular selection of the factors that are associated with nonpolynomial and polynomial splines. Using the developed class of numerical techniques, the problem is reduced to a new system that consists of 2nd-order BVPs only. The end conditions associated with the BVPs are determined. For each problem, the results obtained by CNPS and CPS is compared with the exact solution. The absolute error(AE) for every iteration is calculated. To show that the suitable responses established by using CNPS and CPS have a higher level of preciseness, the absolute errors of the CNPS and CPS have been compared with different techniques such as DTM, ADM, Parametric septic splines, Variational-iteration method(VIM), Daftardar Jafari strategy, MDM, Cubic B-Spline, Homotopy method(HM), Quintic and Sextic B-spline and observed to be more accurate. Graphs that describe the graphical comparison of CNPS and CPS at n = 10 are also included in this paper. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. | en_US |
dc.description.publishedMonth | 2 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Khalid, Aasma...et al.(2021). "Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines", Alexandria Engineering Journal, Vol. 60, No. 1, pp. 941-953. | en_US |
dc.identifier.doi | 10.1016/j.aej.2020.10.022 | |
dc.identifier.endpage | 953 | en_US |
dc.identifier.issn | 1110-0168 | |
dc.identifier.issn | 2090-2670 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85094169610 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 941 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aej.2020.10.022 | |
dc.identifier.volume | 60 | en_US |
dc.identifier.wos | WOS:000605022000017 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 29 | |
dc.subject | Nonlinear | en_US |
dc.subject | Polynomial | en_US |
dc.subject | Differential Equation | en_US |
dc.subject | Spline | en_US |
dc.subject | Finite Difference | en_US |
dc.subject | Absolute Errors | en_US |
dc.title | Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines | tr_TR |
dc.title | Solutions of Bvps Arising in Hydrodynamic and Magnetohydro-Dynamic Stability Theory Using Polynomial and Non-Polynomial Splines | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 21 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |