Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hopf bifurcation for a class of fractional differential equations with delay

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

The main purpose of this manuscript is to prove the existence of solutions for delay fractional order differential equations (FDE) at the neighborhood of its equilibrium point. After we convert the delay FDE into linear delay FDE by using its equilibrium point, we define the 1:2 resonant double Hopf point set with its characteristic equation. We find the members of this set in different cases. The bifurcation curves for a class of delay FDE are obtained within a differential operator of Caputo type with the lower terminal at -a.

Description

Babakhani, Azizollah/0000-0002-5342-1322

Keywords

Fractional Calculus, Hopf Bifurcation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Babakhani, A., Baleanu, D., Khanbabaie, R. (2012). Hopf bifurcation for a class of fractional differential equations with delay. Nonlinear Dynamics, 69(3), 721-729. http://dx.doi.org/ 10.1007/s11071-011-0299-5

WoS Q

Q1

Scopus Q

Q1

Source

Volume

69

Issue

3

Start Page

721

End Page

729