Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Defining Image Memorability Using the Visual Memory Schema

dc.contributor.author Akagündüz, Erdem
dc.contributor.author Bors, Adrian G.
dc.contributor.author Evans, Karla K.
dc.contributor.authorID 233834 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-12-01T07:48:45Z
dc.date.available 2020-12-01T07:48:45Z
dc.date.issued 2020
dc.description.abstract Memorability of an image is a characteristic determined by the human observers' ability to remember images they have seen. Yet recent work on image memorability defines it as an intrinsic property that can be obtained independent of the observer. The current study aims to enhance our understanding and prediction of image memorability, improving upon existing approaches by incorporating the properties of cumulative human annotations. We propose a new concept called the Visual Memory Schema (VMS) referring to an organization of image components human observers share when encoding and recognizing images. The concept of VMS is operationalised by asking human observers to define memorable regions of images they were asked to remember during an episodic memory test. We then statistically assess the consistency of VMSs across observers for either correctly or incorrectly recognised images. The associations of the VMSs with eye fixations and saliency are analysed separately as well. Lastly, we adapt various deep learning architectures for the reconstruction and prediction of memorable regions in images and analyse the results when using transfer learning at the outputs of different convolutional network layers. en_US
dc.description.publishedMonth 9
dc.identifier.citation Akagunduz, Erdem; Bors, A. G.; Evans, Karla K. (2020). "Defining Image Memorability Using the Visual Memory Schema", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 42, No. 9, pp. 2165-2178. en_US
dc.identifier.doi 10.1109/TPAMI.2019.2914392
dc.identifier.issn 0162-8828
dc.identifier.uri https://hdl.handle.net/20.500.12416/4286
dc.language.iso en en_US
dc.relation.ispartof IEEE Transactions on Pattern Analysis and Machine Intelligence en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Visualization en_US
dc.subject Observers en_US
dc.subject Semantics en_US
dc.subject Psychology en_US
dc.subject Organizations en_US
dc.subject Image Recognition en_US
dc.subject Computer Vision en_US
dc.subject Image Memorability en_US
dc.subject Visual Memory Schema en_US
dc.subject Memory Experiments en_US
dc.subject Deep Features en_US
dc.title Defining Image Memorability Using the Visual Memory Schema tr_TR
dc.title Defining Image Memorability Using the Visual Memory Schema en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.description.department Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 2178 en_US
gdc.description.issue 9 en_US
gdc.description.startpage 2165 en_US
gdc.description.volume 42 en_US
gdc.identifier.openalex W2921031543
gdc.openalex.fwci 0.21377151
gdc.openalex.normalizedpercentile 0.52
gdc.opencitations.count 18
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 45
gdc.plumx.pubmedcites 5
gdc.plumx.scopuscites 25
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Akagündüz, Erdem.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: