Sliding Observer for Synchronization of Fractional Order Chaotic Systems With Mismatched Parameter
dc.authorscopusid | 24437653100 | |
dc.authorscopusid | 55144169900 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Delavari, Hadi/W-9216-2019 | |
dc.contributor.author | Delavari, Hadi | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Senejohnny, Danial M. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2020-04-07T17:27:19Z | |
dc.date.available | 2020-04-07T17:27:19Z | |
dc.date.issued | 2012 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Delavari, Hadi] Hamedan Univ Technol, Dept Elect Engn, Hamadan 65155, Iran; [Senejohnny, Danial M.] Islamic Azad Univ, Cent Tehran Branch, Young Researchers club, Tehran, Iran; [Baleanu, Dumitru] Cankaya Univ, TR-06530 Balgat Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania | en_US |
dc.description.abstract | In this paper, we propose an observer-based fractional order chaotic synchronization scheme. Our method concerns fractional order chaotic systems in Brunovsky canonical form. Using sliding mode theory, we achieve synchronization of fractional order response with fractional order drive system using a classical Lyapunov function, and also by fractional order differentiation and integration, i.e. differintegration formulas, state synchronization proved to be established in a finite time. To demonstrate the efficiency of the proposed scheme, fractional order version of a well-known chaotic system; Arnodo-Coullet system is considered as illustrative examples. | en_US |
dc.description.publishedMonth | 10 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Delavari, Hadi; Senejohnny, Danial M.; Baleanu, Dumitru, "Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter", Central European Journal of Physics, Vol. 10, No. 5, pp. 1095-1101, (2012) | en_US |
dc.identifier.doi | 10.2478/s11534-012-0073-4 | |
dc.identifier.endpage | 1101 | en_US |
dc.identifier.issn | 1895-1082 | |
dc.identifier.issn | 1644-3608 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-84870330822 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 1095 | en_US |
dc.identifier.uri | https://doi.org/10.2478/s11534-012-0073-4 | |
dc.identifier.volume | 10 | en_US |
dc.identifier.wos | WOS:000311496400008 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Sciendo | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Chaos Synchronization | en_US |
dc.subject | Fractional Calculus | en_US |
dc.subject | Sliding Observer | en_US |
dc.subject | Finite Hitting Time | en_US |
dc.title | Sliding Observer for Synchronization of Fractional Order Chaotic Systems With Mismatched Parameter | tr_TR |
dc.title | Sliding Observer for Synchronization of Fractional Order Chaotic Systems With Mismatched Parameter | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |