Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Stylometric Analysis of Sustainable Central Bank Communications: Revealing Authorial Signatures in Monetary Policy Statements

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Sustainable economic development requires transparent and consistent institutional communication from monetary authorities to maintain long-term financial stability and public trust. This study investigates the latent authorial structure and stylistic heterogeneity of central bank communications by applying stylometric analysis and unsupervised machine learning to official announcements of the Central Bank of the Republic of Turkey (CBRT). Using a dataset of 557 press releases from 2006 to 2017, we extract a range of linguistic features at both sentence and document levels—including sentence length, punctuation density, word length, and type–token ratios. These features are reduced using Principal Component Analysis (PCA) and clustered via Hierarchical Clustering on Principal Components (HCPC), revealing three distinct authorial groups within the CBRT’s communications. The robustness of these clusters is validated using multidimensional scaling (MDS) on character-level and word-level n-gram distances. The analysis finds consistent stylistic differences between clusters, with implications for authorship attribution, tone variation, and communication strategy. Notably, sentiment analysis indicates that one authorial cluster tends to exhibit more negative tonal features, suggesting potential bias or divergence in internal communication style. These findings challenge the conventional assumption of institutional homogeneity and highlight the presence of distinct communicative voices within the central bank. Furthermore, the results suggest that stylistic variation—though often subtle—may convey unintended policy signals to markets, especially in contexts where linguistic shifts are closely scrutinized. This research contributes to the emerging intersection of natural language processing, monetary economics, and institutional transparency. It demonstrates the efficacy of stylometric techniques in revealing the hidden structure of policy discourse and suggests that linguistic analytics can offer valuable insights into the internal dynamics, credibility, and effectiveness of monetary authorities. These findings contribute to sustainable financial governance by demonstrating how AI-driven analysis can enhance institutional transparency, promote consistent policy communication, and support long-term economic stability—key pillars of sustainable development. © 2025 Elsevier B.V., All rights reserved.

Description

Keywords

AI for Sustainability, Clustering, Machine Learning, Natural Language Processing, Stylometric Analysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Sustainability

Volume

17

Issue

20

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo