Further studies on ordinary differential equations involving the M-fractional derivative
dc.authorid | Khoshkenar, Ali/0000-0002-4920-0316 | |
dc.authorid | Salahshour, Soheil/0000-0003-1390-3551 | |
dc.authorscopusid | 57574191200 | |
dc.authorscopusid | 57196518713 | |
dc.authorscopusid | 36903183800 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 23028598900 | |
dc.authorscopusid | 15051122700 | |
dc.authorscopusid | 15051122700 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Hosseini, Kamyar/J-7345-2019 | |
dc.authorwosid | Ilie, Mousa/Aao-4295-2021 | |
dc.authorwosid | Park, Choonkil/F-6998-2017 | |
dc.authorwosid | Salahshour, Soheil/K-4817-2019 | |
dc.contributor.author | Khoshkenar, A. | |
dc.contributor.author | Ilie, M. | |
dc.contributor.author | Hosseini, K. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.author | Salahshour, S. | |
dc.contributor.author | Park, C. | |
dc.contributor.author | Lee, J. R. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2024-03-28T12:19:01Z | |
dc.date.available | 2024-03-28T12:19:01Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Khoshkenar, A.; Ilie, M.; Hosseini, K.] Islamic Azad Univ, Dept Math, Rasht Branch, Rasht, Iran; [Hosseini, K.] Near East Univ TRNC, Dept Math, Mersin 10, Turkey; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Baleanu, D.] China Med Univ, Dept Med Res, Taichung 40447, Taiwan; [Salahshour, S.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey; [Park, C.] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea; [Lee, J. R.] Daejin Univ, Dept Data Sci, Kyunggi 11159, South Korea | en_US |
dc.description | Khoshkenar, Ali/0000-0002-4920-0316; Salahshour, Soheil/0000-0003-1390-3551 | en_US |
dc.description.abstract | In the current paper, the power series based on the M-fractional derivative is formally introduced. More peciesely, the Taylor and Maclaurin expansions are generalized for fractional-order differentiable functions in accordance with the M-fractional derivative. Some new definitions, theorems, and corollaries regarding the power series in the M sense are presented and formally proved. Several ordinary differential equations (ODEs) involving the M-fractional derivative are solved to examine the validity of the results presented in the current study. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Khoshkenar, A. (2022). "Further studies on ordinary differential equations involving the M-fractional derivative", AIMS Mathematics, Vol.7, No.6, pp.10977-10993. | en_US |
dc.identifier.doi | 10.3934/math.2022613 | |
dc.identifier.endpage | 10993 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85128144975 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 10977 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2022613 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000785524900002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 3 | |
dc.subject | M-Fractional Derivative | en_US |
dc.subject | Power Series | en_US |
dc.subject | New Definitions | en_US |
dc.subject | Theorems And Corollaries | en_US |
dc.subject | Ordinary Differential Equations | en_US |
dc.title | Further studies on ordinary differential equations involving the M-fractional derivative | tr_TR |
dc.title | Further Studies on Ordinary Differential Equations Involving the M-Fractional Derivative | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 3 | |
dspace.entity.type | Publication |