Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Structure preserving numerical scheme for spatio-temporal epidemic model of plant disease dynamics

dc.authorid Rafiq, Muhammad/0000-0002-2165-3479
dc.authorid Iqbal, Muhammad Sajid/0000-0001-6929-8093
dc.authorscopusid 57533440500
dc.authorscopusid 57210525245
dc.authorscopusid 58486733300
dc.authorscopusid 57683996200
dc.authorscopusid 55960372700
dc.authorscopusid 55556543600
dc.authorscopusid 55556543600
dc.authorwosid Ahmad, Muhammad/E-3374-2010
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Iqbal, Muhammad/I-7992-2015
dc.authorwosid Ahmed, Nauman/Aea-3375-2022
dc.authorwosid Akgül, Ali/F-3909-2019
dc.authorwosid Rafiq, Muhammad/Gnw-5095-2022
dc.contributor.author Azam, Shumaila
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmed, Nauman
dc.contributor.author Akgul, Ali
dc.contributor.author Iqbal, Muhammad Sajid
dc.contributor.author Rafiq, Muhammad
dc.contributor.author Ahmad, Muhammad Ozair
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-01-16T07:54:30Z
dc.date.available 2023-01-16T07:54:30Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Azam, Shumaila; Ahmed, Nauman; Iqbal, Muhammad Sajid; Ahmad, Muhammad Ozair] Univ Lahore, Dept Math, Lahore, Pakistan; [Akgul, Ali] Siirt Univ, Dept Math, Art & Sci Fac, TR-56100 Siirt, Turkey; [Rafiq, Muhammad] Univ Cent Punjab, Fac Sci, Dept Math, Lahore, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
dc.description Rafiq, Muhammad/0000-0002-2165-3479; Iqbal, Muhammad Sajid/0000-0001-6929-8093 en_US
dc.description.abstract In this article, an implicit numerical design is formulated for finding the numerical solution of spatiotemporal nonlinear dynamical system with advection. Such type of problems arise in many fields of life sciences, mathematics, physics and engineering. The epidemic model describes the population densities that have some special types of features. These features should be maintained by the numerical design. The proposed scheme, not only solves the nonlinear physical system but also preserves the structure of the state variables. Von-Neumann criteria, M-matrix theory and Taylor's expansion are used for proving some standard results. Basic reproduction number is evaluated and its key role in deciding the stability at the equilibrium points is also investigated. Graphical solutions are also presented against the test problem. en_US
dc.description.publishedMonth 11
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Azam, Shumaila...et al. (2021). "Structure preserving numerical scheme for spatio-temporal epidemic model of plant disease dynamics", Results in Physics, Vol. 30. en_US
dc.identifier.doi 10.1016/j.rinp.2021.104821
dc.identifier.issn 2211-3797
dc.identifier.scopus 2-s2.0-85116516784
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.rinp.2021.104821
dc.identifier.volume 30 en_US
dc.identifier.wos WOS:000720802300010
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Positivity Preserving Scheme en_US
dc.subject Advection Reaction System en_US
dc.subject Epidemic Model en_US
dc.subject M Matrix Theory en_US
dc.title Structure preserving numerical scheme for spatio-temporal epidemic model of plant disease dynamics tr_TR
dc.title Structure Preserving Numerical Scheme for Spatio-Temporal Epidemic Model of Plant Disease Dynamics en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: