Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On nabla conformable fractional Hardy-type inequalities on arbitrary time scales

dc.authorid Eldeeb, Ahmed/0000-0003-2822-4092
dc.authorscopusid 56511757600
dc.authorscopusid 57201678405
dc.authorscopusid 57189867082
dc.authorscopusid 56166678200
dc.authorscopusid 7005872966
dc.authorwosid El-Deeb, Ahmed/Aaq-5910-2020
dc.authorwosid Nwaeze, Eze/Aak-9493-2021
dc.authorwosid Iyiola, Olaniyi/Joj-7549-2023
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author El-Deeb, Ahmed A.
dc.contributor.author Makharesh, Samer D.
dc.contributor.author Nwaeze, Eze R.
dc.contributor.author Iyiola, Olaniyi S.
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-29T12:23:08Z
dc.date.available 2024-04-29T12:23:08Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [El-Deeb, Ahmed A.; Makharesh, Samer D.] Al Azhar Univ, Fac Sci, Dept Math, Cairo 11884, Egypt; [Nwaeze, Eze R.] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL USA; [Iyiola, Olaniyi S.] Clarkson Univ, Dept Math, Potsdam, NY USA; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description Eldeeb, Ahmed/0000-0003-2822-4092 en_US
dc.description.abstract The main aim of the present article is to introduce some new backward difference -conformable dynamic inequalities of Hardy type on time scales. We present and prove several results using chain rule and Fubini's theorem on time scales. Our results generalize, complement, and extend existing results in the literature. Many special cases of the proposed results, such as new conformable fractional h-sum inequalities, new conformable fractional q-sum inequalities, and new classical conformable fractional integral inequalities, are obtained and analyzed. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation El-Deeb, Ahmed A.;...et.al. (2021). "On nabla conformable fractional Hardy-type inequalities on arbitrary time scales", Journal of Inequalities and Applications, Vol.2021, No.1. en_US
dc.identifier.doi 10.1186/s13660-021-02723-7
dc.identifier.issn 1029-242X
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85121006049
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1186/s13660-021-02723-7
dc.identifier.volume 2021 en_US
dc.identifier.wos WOS:000728548900001
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject Fractional Calculus en_US
dc.subject Calculus On Time Scales en_US
dc.subject Conformable Nabla Derivative en_US
dc.subject Conformable Nabla Integral en_US
dc.subject Hardy'S Inequality en_US
dc.title On nabla conformable fractional Hardy-type inequalities on arbitrary time scales tr_TR
dc.title On Nabla Conformable Fractional Hardy-Type Inequalities on Arbitrary Time Scales en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: