Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fractional investigation of time-dependent mass pendulum

dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 34880044900
dc.authorscopusid 8546136600
dc.authorscopusid 57208256299
dc.authorscopusid 56306064100
dc.authorscopusid 8898843900
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Defterli, Ozlem/Aah-2521-2020
dc.authorwosid Sajjadi, Samaneh/Aad-3326-2020
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jajarmi, Amin
dc.contributor.author Defterli, Özlem
dc.contributor.author Defterli, Ozlem
dc.contributor.author Wannan, Rania
dc.contributor.author Sajjadi, Samaneh S.
dc.contributor.author Asad, Jihad H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.authorID 31401 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-12-19T12:51:28Z
dc.date.available 2023-12-19T12:51:28Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru; Defterli, Ozlem] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, Bojnurd, Iran; [Wannan, Rania] Palestine Tech Univ Kadoorire, Fac Appl Sci, Dept Appl Math, Tulkarm, Palestine; [Sajjadi, Samaneh S.] RMIT Univ, Sch Engn, Melbourne, Australia; [Sajjadi, Samaneh S.] Hakim Sabzevari Univ, Dept Elect & Comp Engn, Sabzevar, Iran; [Asad, Jihad H.] Palestine Tech Univ Kadoorire, Fac Appl Sci, Dept Phys, Tulkarm, Palestine; [Asad, Jihad H.] Palestine Tech Univ Kadoorie, Grad Studies, POB 7, Tulkarm, Palestine en_US
dc.description Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this paper, we aim to study the dynamical behaviour of the motion for a simple pendulum with a mass decreasing exponentially in time. To examine this interesting system, we firstly obtain the classical Lagrangian and the Euler-Lagrange equation of the motion accordingly. Later, the generalized Lagrangian is constructed via non-integer order derivative operators. The corresponding non-integer Euler-Lagrange equation is derived, and the calculated approximate results are simulated with respect to different non-integer orders. Simulation results show that the motion of the pendulum with time-dependent mass exhibits interesting dynamical behaviours, such as oscillatory and non-oscillatory motions, and the nature of the motion depends on the order of non-integer derivative; they also demonstrate that utilizing the fractional Lagrangian approach yields a model that is both valid and flexible, displaying various properties of the physical system under investigation. This approach provides a significant advantage in understanding complex phenomena, which cannot be achieved through classical Lagrangian methods. Indeed, the system characteristics, such as overshoot, settling time, and peak time, vary in the fractional case by changing the value of & alpha;. Also, the classical formulation is recovered by the corresponding fractional model when & alpha; tends to 1, while their output specifications are completely different. These successful achievements demonstrate diverse properties of physical systems, enhancing the adaptability and effectiveness of the proposed scheme for modelling complex dynamics. en_US
dc.description.sponsorship Technical University Kadoorie; Scientific and Technological Council of Turkiye (TUBITAK) Reasearch en_US
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is supported by Palestine Technical University Kadoorie; Scientific research fund 2023. This work is partially supported by The Scientific and Technological Council of Turkiye (TUBITAK) Reasearch. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, D...et.al. (2023). "Fractional investigation of time-dependent mass pendulum", Journal of Low Frequency Noise Vibration and Active Control. en_US
dc.identifier.doi 10.1177/14613484231187439
dc.identifier.endpage 207 en_US
dc.identifier.issn 1461-3484
dc.identifier.issn 2048-4046
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85165290957
dc.identifier.scopusquality Q2
dc.identifier.startpage 196 en_US
dc.identifier.uri https://doi.org/10.1177/14613484231187439
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:001029048100001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 7
dc.subject Simple Pendulum en_US
dc.subject Mass Varying With Time en_US
dc.subject Fractional Lagrangian en_US
dc.subject Simulation Technique en_US
dc.title Fractional investigation of time-dependent mass pendulum tr_TR
dc.title Fractional Investigation of Time-Dependent Mass Pendulum en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication 9f00fb1b-e8e0-4303-9d32-1ac0230e2616
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:
Yayımcı Sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: