Fixed points for cyclic orbital generalized contractions on complete metric spaces
No Thumbnail Available
Date
2013
Journal Title
Journal ISSN
Volume Title
Publisher
de Gruyter Open Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293-303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.
Description
Tas, Kenan/0000-0001-8173-453X; Romaguera, Salvador/0000-0001-7857-6139
Keywords
Fixed Point, Cyclic Generalized Contraction, Complete Metric Space
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Karapınar, E., Romaguera, S., Taş, K. (2013). Fixed points for cyclic orbital generalized contractions on complete metric spaces. Central European Journal Of Mathematics, 11(3), 552-560. http://dx.doi.org/10.2478/s11533-012-0145-0
WoS Q
N/A
Scopus Q
N/A
Source
Volume
11
Issue
3
Start Page
552
End Page
560