Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Transient Chaos in Fractional Bloch Equations

dc.authorscopusid 24170858100
dc.authorscopusid 6602866231
dc.authorscopusid 7005872966
dc.authorscopusid 7005342618
dc.authorwosid Bhalekar, S./D-7628-2011
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Bhalekar, Sachin
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Daftardar-Gejji, Varsha
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Magin, Richard
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-07T14:40:49Z
dc.date.available 2020-04-07T14:40:49Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Bhalekar, Sachin] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India; [Daftardar-Gejji, Varsha] Univ Pune, Dept Math, Pune 411007, Maharashtra, India; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Magin, Richard] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA en_US
dc.description.abstract The Bloch equation provides the fundamental description of nuclear magnetic resonance (NMR) and relaxation (T-1 and T-2). This equation is the basis for both NMR spectroscopy and magnetic resonance imaging (MRI). The fractional-order Bloch equation is a generalization of the integer-order equation that interrelates the precession of the x, y and z components of magnetization with time- and space-dependent relaxation. In this paper we examine transient chaos in a non-linear version of the Bloch equation that includes both fractional derivatives and a model of radiation damping. Recent studies of spin turbulence in the integer-order Bloch equation suggest that perturbations of the magnetization may involve a fading power law form of system memory, which is concisely embedded in the order of the fractional derivative. Numerical analysis of this system shows different patterns in the stability behavior for alpha near 1.00. In general, when alpha is near 1.00, the system is chaotic, while for 0.98 >= alpha >= 0.94, the system shows transient chaos. As the value of alpha decreases further, the duration of the transient chaos diminishes and periodic sinusoidal oscillations emerge. These results are consistent with studies of the stability of both the integer and the fractional-order Bloch equation. They provide a more complete model of the dynamic behavior of the NMR system when non-linear feedback of magnetization via radiation damping is present. (C) 2012 Elsevier Ltd. All rights reserved. en_US
dc.description.publishedMonth 11
dc.description.sponsorship Department of Science and Technology, N. Delhi, India [1SR/S2/HEP-024/2009] en_US
dc.description.sponsorship V. Daftardar-Gejji acknowledges the Department of Science and Technology, N. Delhi, India for the Research Grants [Project No. 1SR/S2/HEP-024/2009]. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bhalekar, Sachin...et al. (2012). "Transient chaos in fractional Bloch equations", Vol. 64. No. 10, pp. 3367-3376. en_US
dc.identifier.doi 10.1016/j.camwa.2012.01.069
dc.identifier.endpage 3376 en_US
dc.identifier.issn 0898-1221
dc.identifier.issn 1873-7668
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-84868210932
dc.identifier.scopusquality Q1
dc.identifier.startpage 3367 en_US
dc.identifier.uri https://doi.org/10.1016/j.camwa.2012.01.069
dc.identifier.volume 64 en_US
dc.identifier.wos WOS:000311460600041
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 54
dc.subject Fractional Calculus en_US
dc.subject Bloch Equation en_US
dc.subject Chaos en_US
dc.title Transient Chaos in Fractional Bloch Equations tr_TR
dc.title Transient Chaos in Fractional Bloch Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 46
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
840.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: