Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Transient Chaos in Fractional Bloch Equations

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorDaftardar-Gejji, Varsha
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorMagin, Richard
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-04-07T14:40:49Z
dc.date.available2020-04-07T14:40:49Z
dc.date.issued2012
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe Bloch equation provides the fundamental description of nuclear magnetic resonance (NMR) and relaxation (T-1 and T-2). This equation is the basis for both NMR spectroscopy and magnetic resonance imaging (MRI). The fractional-order Bloch equation is a generalization of the integer-order equation that interrelates the precession of the x, y and z components of magnetization with time- and space-dependent relaxation. In this paper we examine transient chaos in a non-linear version of the Bloch equation that includes both fractional derivatives and a model of radiation damping. Recent studies of spin turbulence in the integer-order Bloch equation suggest that perturbations of the magnetization may involve a fading power law form of system memory, which is concisely embedded in the order of the fractional derivative. Numerical analysis of this system shows different patterns in the stability behavior for alpha near 1.00. In general, when alpha is near 1.00, the system is chaotic, while for 0.98 >= alpha >= 0.94, the system shows transient chaos. As the value of alpha decreases further, the duration of the transient chaos diminishes and periodic sinusoidal oscillations emerge. These results are consistent with studies of the stability of both the integer and the fractional-order Bloch equation. They provide a more complete model of the dynamic behavior of the NMR system when non-linear feedback of magnetization via radiation damping is present. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.description.publishedMonth11
dc.identifier.citationBhalekar, Sachin...et al. (2012). "Transient chaos in fractional Bloch equations", Vol. 64. No. 10, pp. 3367-3376.en_US
dc.identifier.doi10.1016/j.camwa.2012.01.069
dc.identifier.endpage3376en_US
dc.identifier.issn0898-1221
dc.identifier.issue10en_US
dc.identifier.startpage3367en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/2953
dc.identifier.volume64en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.ispartofComputers & Mathematıcs Wıth Applıcatıonsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Calculusen_US
dc.subjectBloch Equationen_US
dc.subjectChaosen_US
dc.titleTransient Chaos in Fractional Bloch Equationstr_TR
dc.titleTransient Chaos in Fractional Bloch Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dumitru Baleanu.pdf
Size:
840.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: