Numerical simulation of the fractional diffusion equation
dc.authorid | Alquran, Marwan/0000-0003-3901-9270 | |
dc.authorscopusid | 57210557042 | |
dc.authorscopusid | 57193690600 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 55950421900 | |
dc.authorscopusid | 36679871400 | |
dc.authorwosid | Sulaiman, Tukur/Gsd-2604-2022 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Alquran, Marwan/Iup-3798-2023 | |
dc.contributor.author | Partohaghighi, Mohammad | |
dc.contributor.author | Yusuf, Abdullahi | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Sulaiman, Tukur A. | |
dc.contributor.author | Alquran, Marwan | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-01-16T13:47:58Z | |
dc.date.available | 2024-01-16T13:47:58Z | |
dc.date.issued | 2023 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Partohaghighi, Mohammad] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA; [Yusuf, Abdullahi; Sulaiman, Tukur A.] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Alquran, Marwan] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan | en_US |
dc.description | Alquran, Marwan/0000-0003-3901-9270 | en_US |
dc.description.abstract | During this paper, a specific type of fractal-fractional diffusion equation is presented by employing the fractal-fractional operator. We present a reliable and accurate operational matrix approach using shifted Chebyshev cardinal functions to solve the considered problem. Also, an operational matrix for the considered derivative is obtained from basic functions. To solve the introduced problem, we convert the main equation into an algebraic system by extracting the operational matrix methods. Graphs of exact and approximate solutions along with error graphs are presented. These figures show how the introduced approach is reliable and accurate. Also, tables are established to illustrate the values of solutions and errors. Finally, a comparison of the solutions at a specific time is given for each test problem. | en_US |
dc.description.publishedMonth | 4 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Partohaghighi, Mohammad;...et.al. (2023). "Numerical simulation of the fractional diffusion equation", International Journal of Modern Physics B, Vol.37, No.10. | en_US |
dc.identifier.doi | 10.1142/S0217979223500972 | |
dc.identifier.issn | 0217-9792 | |
dc.identifier.issn | 1793-6578 | |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopus | 2-s2.0-85140231658 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1142/S0217979223500972 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000936329400008 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Jarad, Fahd | |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 8 | |
dc.subject | Fractal-Fractional Operator | en_US |
dc.subject | Chebyshev Cardinal Functions | en_US |
dc.subject | Nonlinear Science | en_US |
dc.title | Numerical simulation of the fractional diffusion equation | tr_TR |
dc.title | Numerical Simulation of the Fractional Diffusion Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 6 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: