Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical simulation of the fractional diffusion equation

dc.authorid Alquran, Marwan/0000-0003-3901-9270
dc.authorscopusid 57210557042
dc.authorscopusid 57193690600
dc.authorscopusid 15622742900
dc.authorscopusid 55950421900
dc.authorscopusid 36679871400
dc.authorwosid Sulaiman, Tukur/Gsd-2604-2022
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.authorwosid Alquran, Marwan/Iup-3798-2023
dc.contributor.author Partohaghighi, Mohammad
dc.contributor.author Yusuf, Abdullahi
dc.contributor.author Jarad, Fahd
dc.contributor.author Sulaiman, Tukur A.
dc.contributor.author Alquran, Marwan
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-01-16T13:47:58Z
dc.date.available 2024-01-16T13:47:58Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Partohaghighi, Mohammad] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA; [Yusuf, Abdullahi; Sulaiman, Tukur A.] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye; [Alquran, Marwan] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan en_US
dc.description Alquran, Marwan/0000-0003-3901-9270 en_US
dc.description.abstract During this paper, a specific type of fractal-fractional diffusion equation is presented by employing the fractal-fractional operator. We present a reliable and accurate operational matrix approach using shifted Chebyshev cardinal functions to solve the considered problem. Also, an operational matrix for the considered derivative is obtained from basic functions. To solve the introduced problem, we convert the main equation into an algebraic system by extracting the operational matrix methods. Graphs of exact and approximate solutions along with error graphs are presented. These figures show how the introduced approach is reliable and accurate. Also, tables are established to illustrate the values of solutions and errors. Finally, a comparison of the solutions at a specific time is given for each test problem. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Partohaghighi, Mohammad;...et.al. (2023). "Numerical simulation of the fractional diffusion equation", International Journal of Modern Physics B, Vol.37, No.10. en_US
dc.identifier.doi 10.1142/S0217979223500972
dc.identifier.issn 0217-9792
dc.identifier.issn 1793-6578
dc.identifier.issue 10 en_US
dc.identifier.scopus 2-s2.0-85140231658
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1142/S0217979223500972
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000936329400008
dc.identifier.wosquality Q2
dc.institutionauthor Jarad, Fahd
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Fractal-Fractional Operator en_US
dc.subject Chebyshev Cardinal Functions en_US
dc.subject Nonlinear Science en_US
dc.title Numerical simulation of the fractional diffusion equation tr_TR
dc.title Numerical Simulation of the Fractional Diffusion Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: