Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fuzzy prediction strategies for gene-environment networks - fuzzy regression analysis for two-modal regulatory systems

dc.contributor.authorDefterli, Özlem
dc.contributor.authorÖzmen, Ayşe
dc.contributor.authorWeber, Gerhard-Wilhelm
dc.contributor.authorMeyer-Nieberg, Silja
dc.contributor.authorDefterli, Özlem
dc.contributor.authorID31401tr_TR
dc.date.accessioned2018-09-12T08:42:19Z
dc.date.available2018-09-12T08:42:19Z
dc.date.issued2016
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümüen_US
dc.description.abstractTarget-environment networks provide a conceptual framework for the analysis and prediction of complex regulatory systems such as genetic networks, eco-finance networks or sensor-target assignments. These evolving networks consist of two major groups of entities that are interacting by unknown relationships. The structure and dynamics of the hidden regulatory system have to be revealed from uncertain measurement data. In this paper, the concept of fuzzy target-environment networks is introduced and various fuzzy possibilistic regression models are presented. The relation between the targets and/or environmental entities of the regulatory network is given in terms of a fuzzy model. The vagueness of the regulatory system results from the (unknown) fuzzy coefficients. For an identification of the fuzzy coefficients' shape, methods from fuzzy regression are adapted and made applicable to the bi-level situation of target-environment networks and uncertain data. Various shapes of fuzzy coefficients are considered and the control of outliers is discussed. A first numerical example is presented for purposes of illustration. The paper ends with a conclusion and an outlook to future studiesen_US
dc.description.publishedMonth4
dc.identifier.citationKropat, E...et al. (2016). Fuzzy prediction strategies for gene-environment networks - fuzzy regression analysis for two-modal regulatory systems. Rairo-Operations Research, 50(2), 413-435. http://dx.doi.org/10.1051/ro/2015044en_US
dc.identifier.doi10.1051/ro/2015044
dc.identifier.endpage435en_US
dc.identifier.issn0399-0559
dc.identifier.issue2en_US
dc.identifier.startpage413en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/1701
dc.identifier.volume50en_US
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.relation.ispartofRairo-Operations Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy Evolving Networksen_US
dc.subjectFuzzy Target-Environment Networksen_US
dc.subjectUncertaintyen_US
dc.subjectFuzzy Theoryen_US
dc.subjectFuzzy Regression Analysisen_US
dc.subjectPossibilistic Regressionen_US
dc.subjectForecastingen_US
dc.titleFuzzy prediction strategies for gene-environment networks - fuzzy regression analysis for two-modal regulatory systemstr_TR
dc.titleFuzzy Prediction Strategies for Gene-Environment Networks - Fuzzy Regression Analysis for Two-Modal Regulatory Systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9f00fb1b-e8e0-4303-9d32-1ac0230e2616
relation.isAuthorOfPublication.latestForDiscovery9f00fb1b-e8e0-4303-9d32-1ac0230e2616

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: