Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Generalized variational calculus in terms of multi-parameters fractional derivatives

dc.authorscopusid 26642958600
dc.authorscopusid 7003657106
dc.authorscopusid 7005872966
dc.authorwosid Muslih, Sami/Aaf-4974-2020
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Agrawal, Om P.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Muslih, Sami I.
dc.contributor.author Baleanu, Dumitru
dc.contributor.other Matematik
dc.date.accessioned 2016-06-07T08:39:26Z
dc.date.available 2016-06-07T08:39:26Z
dc.date.issued 2011
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Agrawal, Om P.] So Illinois Univ, Carbondale, IL 62901 USA; [Muslih, Sami I.] Al Azhar Univ, Dept Phys, Gaza, Israel; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania en_US
dc.description.abstract In this paper, we briefly introduce two generalizations of work presented a few years ago on fractional variational formulations. In the first generalization, we consider the Hilfer's generalized fractional derivative that in some sense interpolates between Riemann-Liouville and Caputo fractional derivatives. In the second generalization, we develop a fractional variational formulation in terms of a three parameter fractional derivative. We develop integration by parts formulas for the generalized fractional derivatives which are key to developing fractional variational calculus. It is shown that many derivatives used recently and their variational formulations can be obtained by setting different parameters to different values. We also define fractional generalized momenta and provide fractional Hamiltonian formulations in terms of the new generalized derivatives. An example is presented to show applications of the formulations presented here. Some possible extensions of this research are also discussed. (C) 2011 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 12
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Agrawal, O.P., Muslih, S.I., Baleanu, D. (2011). Generalized variational calculus in terms of multi-parameters fractional derivatives. Communications In Nonlinear Science And Numerical Simulation, 16(12), 4756-4767. http://dx.doi.org/10.1016/j.cnsns.2011.05.002 en_US
dc.identifier.doi 10.1016/j.cnsns.2011.05.002
dc.identifier.endpage 4767 en_US
dc.identifier.issn 1007-5704
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-79960201920
dc.identifier.scopusquality Q1
dc.identifier.startpage 4756 en_US
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2011.05.002
dc.identifier.volume 16 en_US
dc.identifier.wos WOS:000293875300026
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 75
dc.subject Fractional Calculus en_US
dc.subject Hilfer'S Generalized Fractional Derivative en_US
dc.subject Fractional Variational Calculus en_US
dc.title Generalized variational calculus in terms of multi-parameters fractional derivatives tr_TR
dc.title Generalized Variational Calculus in Terms of Multi-Parameters Fractional Derivatives en_US
dc.type Article en_US
dc.wos.citedbyCount 61
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: