Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Molecular dynamics study of atomic Management and thermal behavior of Al-Water Nanofluid: A two phase unsteady simulation

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Molecular Dynamic (MD) approach is used to describe the temperature and pressure effects on the Al nanoparticles aggregation process in the aqueous environment of water as the base liquid. For this goal, various physical parameters like total energy, temperature, aggregation time, and total energy of the simulated structures, are reported. The results show that the aggregation process enlarges by the ratio of temperature and pressure. By atomic mobility increasing, the Al nanoparticles collide with each other in a shorter simulation time. Numerically, by temperature increases from 300 K to 350 K, the aggregation time decreases from 1.33 ns to 1.18 ns. Furthermore, aggregation time increases to 1.99 ns by more pressure to 5 bar.

Description

Keywords

Aggregation Process, Atomic Manner, Molecular Dynamics Simulation, Nanoparticle

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Shi, Yunhong...et al. (2021). "The Molecular dynamics study of atomic Management and thermal behavior of Al-Water Nanofluid: A two phase unsteady simulation", Journal of Molecular Liquids, Vol. 340.

WoS Q

Scopus Q

Source

Journal of Molecular Liquids

Volume

340

Issue

Start Page

End Page