New applications related to Covid-19
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Ahmed, Nauman | |
dc.contributor.author | Raza, Ali | |
dc.contributor.author | Iqbal, Zafar | |
dc.contributor.author | Rafiq, Muhammad | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rehman, Muhammad Aziz-ur | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2022-06-28T11:12:58Z | |
dc.date.available | 2022-06-28T11:12:58Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | Analysis of mathematical models projected for COVID-19 presents in many valuable outputs. We analyze a model of differential equation related to Covid-19 in this paper. We use fractal-fractional derivatives in the proposed model. We analyze the equilibria of the model. We discuss the stability analysis in details. We apply very effective method to obtain the numerical results. We demonstrate our results by the numerical simulations. © 2020 The Author(s) | en_US |
dc.description.publishedMonth | 1 | |
dc.identifier.citation | Akgül, Ali...et al. (2021). "New applications related to Covid-19", Results in Physics, Vol. 20. | en_US |
dc.identifier.doi | 10.1016/j.rinp.2020.103663 | |
dc.identifier.issn | 2211-3797 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/5705 | |
dc.identifier.volume | 20 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Results in Physics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Covid-19 | en_US |
dc.subject | Fractal Fractional Derivative | en_US |
dc.subject | Numerical Simulations | en_US |
dc.subject | Stability Analysis | en_US |
dc.title | New applications related to Covid-19 | tr_TR |
dc.title | New Applications Related To Covid-19 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |