Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Large-Scale Hyperspectral Image Compression Via Sparse Representations Based on Online Learning

dc.contributor.author Ulku, Irem
dc.contributor.author Kizgut, Ersin
dc.contributor.authorID 17575 tr_TR
dc.contributor.other 07.01. Lisansüstü Eğitim Enstitüsü
dc.contributor.other 07. Enstitüler
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2018-09-12T13:15:57Z
dc.date.accessioned 2025-09-18T12:06:45Z
dc.date.available 2018-09-12T13:15:57Z
dc.date.available 2025-09-18T12:06:45Z
dc.date.issued 2018
dc.description Kizgut, Ersin/0000-0002-9642-0442 en_US
dc.description.abstract In this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an online dictionary learning method. Compression performances are compared with the one obtained by various sparse representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection is tested on the reconstructed images. en_US
dc.description.publishedMonth 3
dc.description.sponsorship Turkish Scientific and Technical Research Council en_US
dc.description.sponsorship The authors would like to thank the anonymous reviewers for their helpful and constructive comments that greatly contributed to improving the final version of the paper. They are also thankful to Prof. Halil T. Eyyuboglu for his useful suggestions and comments. This research was partially supported by the Turkish Scientific and Technical Research Council. en_US
dc.identifier.citation Ülkü, İ., Kizgut, E. (2018). Large-scale hyperspectral image compression via sparse representations based on online learning. International Journal Of Applied Mathematics And Computer Science, 28(1), 197-207. http://dx.doi.org/10.2478/amcs-2018-0015 en_US
dc.identifier.doi 10.2478/amcs-2018-0015
dc.identifier.issn 1641-876X
dc.identifier.issn 2083-8492
dc.identifier.scopus 2-s2.0-85049000853
dc.identifier.uri https://doi.org/10.2478/amcs-2018-0015
dc.identifier.uri https://hdl.handle.net/123456789/10979
dc.language.iso en en_US
dc.publisher Univ Zielona Gora Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Hyperspectral Imaging en_US
dc.subject Compression Algorithms en_US
dc.subject Dictionary Learning en_US
dc.subject Sparse Coding en_US
dc.title Large-Scale Hyperspectral Image Compression Via Sparse Representations Based on Online Learning en_US
dc.title Large-scale hyperspectral image compression via sparse representations based on online learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kizgut, Ersin/0000-0002-9642-0442
gdc.author.institutional Kızgut, Ersin
gdc.author.scopusid 57219399185
gdc.author.scopusid 57202685744
gdc.author.wosid Ulku,, Irem/Ahd-8857-2022
gdc.author.wosid Kizgut, Ersin/M-3074-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ulku, Irem] Cankaya Univ, Dept Elect & Elect Engn, Eskisehir Yolu 29 km, TR-06790 Ankara, Turkey; [Kizgut, Ersin] Univ Politecn Valencia, Univ Inst Pure & Appl Math IUMPA, E-46071 Valencia, Spain en_US
gdc.description.endpage 207 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 197 en_US
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2795192973
gdc.identifier.wos WOS:000428798700015
gdc.openalex.fwci 0.48409315
gdc.openalex.normalizedpercentile 0.58
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 4
relation.isAuthorOfPublication 9d459151-fe87-412f-a091-ad503b729344
relation.isAuthorOfPublication.latestForDiscovery 9d459151-fe87-412f-a091-ad503b729344
relation.isOrgUnitOfPublication ffcce87f-81ab-42d4-8e3d-c3681eb9db31
relation.isOrgUnitOfPublication 6a12b1e8-2e29-4fa5-84a5-1ce6f0505afe
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery ffcce87f-81ab-42d4-8e3d-c3681eb9db31

Files