Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application
dc.authorscopusid | 57218897831 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 55504591700 | |
dc.authorscopusid | 56835675500 | |
dc.authorwosid | Kodamasingh, Bibhakar/Ahc-9777-2022 | |
dc.authorwosid | Kashuri, Artion/L-5876-2018 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Sahoo, Soubhagya/Gpt-3087-2022 | |
dc.contributor.author | Sahoo, Soubhagya Kumar | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Kodamasingh, Bibhakar | |
dc.contributor.author | Kashuri, Artion | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-03-12T13:24:59Z | |
dc.date.available | 2024-03-12T13:24:59Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Sahoo, Soubhagya Kumar; Kodamasingh, Bibhakar] Siksha O Anusandhan Univ, Inst Tech Educ & Res, Dept Math, Bhubaneswar 751030, India; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia; [Jarad, Fahd] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Kashuri, Artion] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlora 9400, Albania | en_US |
dc.description.abstract | Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Holder-Iscan, Jensen and Young inequality. Also, if we take the parameter rho = 1 in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Sahoo, Soubhagya Kumar;...et.al. (2022). "Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application", AIMS Mathematics, Vol.7, No.7, pp.12303-12321. | en_US |
dc.identifier.doi | 10.3934/math.2022683 | |
dc.identifier.endpage | 12321 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85129377262 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 12303 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2022683 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000791830800002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 10 | |
dc.subject | Convex Functions | en_US |
dc.subject | Hermite-Hadamard Inequality | en_US |
dc.subject | Atangana-Baleanu Fractional Integral Operators | en_US |
dc.subject | Young Inequality | en_US |
dc.subject | Jensen'S Inequality | en_US |
dc.title | Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application | tr_TR |
dc.title | Hermite-Hadamard Type Inclusions Via Generalized Atangana-Baleanu Fractional Operator With Application | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 10 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |