Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Supervised Learning Method for Prediction of Heat Transfer Characteristics of Nanofluids

dc.contributor.author Kocak, Eyup
dc.contributor.author Ayli, Ece
dc.contributor.authorID 265836 tr_TR
dc.contributor.authorID 283455 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-26T07:57:02Z
dc.date.accessioned 2025-09-18T12:06:44Z
dc.date.available 2024-01-26T07:57:02Z
dc.date.available 2025-09-18T12:06:44Z
dc.date.issued 2023
dc.description.abstract This study focuses on the alication and investigation of the predictive ability of artificial intelligence in the numerical modelling of nanofluid flows. Numerical and experimental methods are powerful tools from an accuracy point of view, but they are also time- and cost-consuming methods. Therefore, using soft-computing techniques can improve such CFD drawbacks by patterning the CFD data. After obtaining the aropriate ANN and ANFIS architecture using the CFD data, many new data can be created without requiring numerical and experimental methods. In the scope of this research, the FCM-ANFIS and ANN methods are used to predict the thermal behaviour of the turbulent flow in a heated pipe with several nanoparticles. A parametric CFD study is carried out for water-TiO2, water-CuO, and water-SiO2 nanofluid through a pipe. The Reynolds number is varied between 7000 and 15000, and the nanofluid concentration is varied between 0.25 % and 4 %. The effects of using nanofluid on local values of Nusselt number and shear stress distribution were investigated. Numerical results indicate that with the increasing nanoparticle volume fraction of nanofluid, the average Nusselt number increases, but the required pumping power also increases. The obtained soft computing results demonstrate that the FCM clustering ANFIS has given better results both in training and testing when it is compared to the ANN architecture with an R-2 of 0.9983. Regarding this, the FCM-ANFIS is an excellent candidate for calculating the Nusselt number in heat transfer problems. en_US
dc.description.publishedMonth 5
dc.identifier.citation Aylı, E.; Koçak, E. (2023). "Supervised learning method for prediction of heat transfer characteristics of nanofluids", Journal of Mechanical Science and Technology, vol.37, No.5, pp.2687-2697. en_US
dc.identifier.doi 10.1007/s12206-023-0442-5
dc.identifier.issn 1738-494X
dc.identifier.issn 1976-3824
dc.identifier.scopus 2-s2.0-85156122976
dc.identifier.uri https://doi.org/10.1007/s12206-023-0442-5
dc.identifier.uri https://hdl.handle.net/123456789/10969
dc.language.iso en en_US
dc.publisher Korean Soc Mechanical Engineers en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Ann en_US
dc.subject Fcm en_US
dc.subject Anfis en_US
dc.subject Cfd en_US
dc.subject Nanofluid en_US
dc.subject Forced Convection en_US
dc.title Supervised Learning Method for Prediction of Heat Transfer Characteristics of Nanofluids en_US
dc.title Supervised learning method for prediction of heat transfer characteristics of nanofluids tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Koçak, Eyup
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.scopusid 55371892800
gdc.author.scopusid 57193872973
gdc.author.wosid Kocak, Eyup/Hik-2192-2022
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ayli, Ece; Kocak, Eyup] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.endpage 2697 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2687 en_US
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4367674178
gdc.identifier.wos WOS:000980379500003
gdc.openalex.fwci 1.74765855
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 9
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.wos.citedcount 8
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files