Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fuzzy Hybrid Systems modeling with application in decision making and control

dc.authorscopusid 6602518782
dc.authorscopusid 22433346900
dc.authorscopusid 55464613900
dc.contributor.author Boutalis, Y.
dc.contributor.author Moor, T.
dc.contributor.author Schmidt, K.
dc.contributor.other Mekatronik Mühendisliği
dc.date.accessioned 2023-02-16T12:49:30Z
dc.date.available 2023-02-16T12:49:30Z
dc.date.issued 2012
dc.department Çankaya University en_US
dc.department-temp Boutalis Y., Dept. of El. and Comp. Engineering, Democritus University of Thrace, Xanthi, Greece, LRT, Universität Erlangen-Nürnberg, Erlangen, Germany; Moor T., Lehrstuhl fur Regelungstechnik (LRT), Universität Erlangen-Nürnberg, Erlangen, Germany; Schmidt K., Dept. of Mechatronics Engineering, Çankaya University, 06530 Ankara, Turkey en_US
dc.description IEEE Instrumentation and Measurement Society; IEEE IM/CS/SMC Joint Chapter of Bulgaria; IEEE Systems, Man and Cybernetics Society en_US
dc.description.abstract Hybrid Systems are systems containing both discrete event and continuous variable components. Many recent contributions address crisp situations, where ambiguity or subjectivity in the measured data is absent. In this paper, we propose Fuzzy Hybrid Systems to account for inaccurate measurements and uncertain dynamics. We present a strategy to determine the most appropriate control actions in a sampled data setting. The proposed approach is based on three basic steps that are performed in each sampling period. First, the current discrete fuzzy state of the system is determined by a sensor evaluation. Next, the future discrete fuzzy state is predicted for the possible control actions and the best action, in respect to desired continuous states, is selected. Finally, the decision is cross-evaluated by a limited horizon prediction of the continuous system variables. The proposed method is explained and demonstrated for a variation of the a well-known two-tank scenario. © 2012 IEEE. en_US
dc.identifier.citation Boutalis, Yiannis; Moor, Thomas; Schmidt, Klaus (2012). "Fuzzy Hybrid Systems modeling with application in decision making and control", IS'2012 - 2012 6th IEEE International Conference Intelligent Systems, Proceedings, pp. 290-296. en_US
dc.identifier.doi 10.1109/IS.2012.6335150
dc.identifier.endpage 296 en_US
dc.identifier.isbn 9781467327824
dc.identifier.scopus 2-s2.0-84869840825
dc.identifier.scopusquality N/A
dc.identifier.startpage 290 en_US
dc.identifier.uri https://doi.org/10.1109/IS.2012.6335150
dc.identifier.wosquality N/A
dc.institutionauthor Schmıdt, Klaus Werner
dc.language.iso en en_US
dc.relation.ispartof IS'2012 - 2012 6th IEEE International Conference Intelligent Systems, Proceedings -- 2012 6th IEEE International Conference Intelligent Systems, IS 2012 -- 6 September 2012 through 8 September 2012 -- Sofia -- 94030 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.title Fuzzy Hybrid Systems modeling with application in decision making and control tr_TR
dc.title Fuzzy Hybrid Systems Modeling With Application in Decision Making and Control en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication ec56c293-1f64-49af-b5ae-5ae41cb32f1b
relation.isAuthorOfPublication.latestForDiscovery ec56c293-1f64-49af-b5ae-5ae41cb32f1b
relation.isOrgUnitOfPublication 5b0b2c59-0735-4593-b820-ff3847d58827
relation.isOrgUnitOfPublication.latestForDiscovery 5b0b2c59-0735-4593-b820-ff3847d58827

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: