Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Novel Collocated-Shifted Lucas Polynomial Approach for Fractional Integro-Differential Equations

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorKumar, R.
dc.contributor.authorSrivastava, K.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2022-03-02T07:08:09Z
dc.date.available2022-03-02T07:08:09Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn current analysis, a novel computational approach depending on shifted Lucas polynomials (SLPs) and collocation points is established for fractional integro-differential equations (FIDEs) of Volterra/Fredholm type. A definition for integer order derivative and the lemma for fractional derivative of SLPs are developed. To convert the given equations into algebraic set of equations, zeros of the Lucas polynomial are used as collocation points. Novel theorems for convergence and error analysis are developed to design rigorous mathematical basis for the scheme. Accuracy is proclaimed through comparison with other known methods. © 2021, The Author(s), under exclusive licence to Springer Nature India Private Limited.en_US
dc.description.publishedMonth8
dc.identifier.citationKoundal, R...at all (2021). "A Novel Collocated-Shifted Lucas Polynomial Approach for Fractional Integro-Differential Equations", International Journal of Applied and Computational Mathematics, Vol. 7, No. 4.en_US
dc.identifier.doi10.1007/s40819-021-01108-0
dc.identifier.issn2349-5103
dc.identifier.issue4en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5066
dc.identifier.volume7en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Applied and Computational Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCollocation Pointen_US
dc.subjectExplicit Formulaen_US
dc.subjectFractional Integro-Differential Equationsen_US
dc.subjectShifted Lucas Polynomialen_US
dc.titleA Novel Collocated-Shifted Lucas Polynomial Approach for Fractional Integro-Differential Equationstr_TR
dc.titleA Novel Collocated-Shifted Lucas Polynomial Approach for Fractional Integro-Differential Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: