Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Investigation of Ordinary and Partial Differential Equations with Variable Fractional Order by Bernstein Operational Matrix

dc.authorscopusid 57942767200
dc.authorscopusid 57220772685
dc.authorscopusid 7801309777
dc.authorscopusid 7005872966
dc.contributor.author Taleshian, A.H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Alipour, M.
dc.contributor.author Babakhani, A.
dc.contributor.author Baleanu, D.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-29T12:19:24Z
dc.date.available 2024-04-29T12:19:24Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp Taleshian A.H., Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran; Alipour M., Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran; Babakhani A., Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, 47148-71167, Iran; Baleanu D., Department of Mathematics and Computer Sciences, Cankaya University, Ankara, Balgat, 06530, Turkey, Institute of Space Sciences, Maguerele-Bucharest, Romania en_US
dc.description.abstract This research proposes a method to find numerical solutions of the variable-order fractional differential equation. We derived new operational matrix by applying Bernstein polynomials. Then, using this matrix, the method of solving the system of variable-order fractional differential equation and variable-order fractional partial differential equation are presented. Various numerical examples of these problems are provided along with the figures and tables. Finally, the accuracy of the proposed method is evaluated. © 2022, The Author(s), under exclusive licence to Springer Nature India Private Limited. en_US
dc.description.publishedMonth 12
dc.identifier.citation Taleshian, Amir Hose;...et.al. (2022). "Numerical Investigation of Ordinary and Partial Differential Equations with Variable Fractional Order by Bernstein Operational Matrix", International Journal of Applied and Computational Mathematics, Vol.8, No.6. en_US
dc.identifier.doi 10.1007/s40819-022-01475-2
dc.identifier.issn 2349-5103
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85140605747
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s40819-022-01475-2
dc.identifier.volume 8 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof International Journal of Applied and Computational Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Bernstein Polynomials en_US
dc.subject Operational Matrix en_US
dc.subject Partial Differential Equation Problems en_US
dc.subject Riemann-Liouville Fractional Derivative And Integral en_US
dc.subject System Of Nonlinear Differential Equations Problems en_US
dc.subject Variable Order Fractional Differential Equations en_US
dc.title Numerical Investigation of Ordinary and Partial Differential Equations with Variable Fractional Order by Bernstein Operational Matrix tr_TR
dc.title Numerical Investigation of Ordinary and Partial Differential Equations With Variable Fractional Order by Bernstein Operational Matrix en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: