Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storage

dc.contributor.authorIzadi, Mohsen
dc.contributor.authorSheremet, Mikhail
dc.contributor.authorHajjar, Ahmad
dc.contributor.authorGalal, Ahmed M.
dc.contributor.authorMahariq, Ibrahim
dc.contributor.authorJarad, Fahd
dc.contributor.authorBen Hamida, Mohamed Bechir
dc.contributor.authorID234808tr_TR
dc.date.accessioned2024-01-16T13:45:46Z
dc.date.available2024-01-16T13:45:46Z
dc.date.issued2023
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractLatent heat storage is among the most effective thermal energy storage techniques. The heat can be stored or released in a phase change substance undergoing melting or solidification. The present research addresses the melting process of paraffin, a phase change material, enhanced with metallic alumina nanoparticles, inside a hexagonal heat storage unit in the presence of a uniform magnetic field is investigated. The melting process occurs during the thermal charge of the latent heat storage unit. The enthalpy-porosity method was employed to model the melting process. The influence of the Lorentz force strength and magnetic field inclination angle as well as the nanoparticle concentration on charging level was scrutinized. It was found that the Lorentz force can suppress the charging level of the thermal energy storage system, while the magnetic field inclination angle can be suitable to control the energy transport performance and melting motion within the thermal energy storage unit. Moreover, raising the nanoadditives concentration diminishes the melting process. Overall, the obtained results confirmed that altering the intensity or direction of the external magnetic field presents indeed a mean for controlling the flow and thermal behavior of nano-enhanced phase change materials. Imposing the Ha up to 500 increases 266% the dimensionless melting time compared to ignoring magnetic field (Ha = 0).en_US
dc.description.publishedMonth3
dc.identifier.citationIzadi, Mohsen;...et.al. 82023). "Numerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storage", Applied Thermal Engineering, Vol.223.en_US
dc.identifier.doi10.1016/j.applthermaleng.2023.119984
dc.identifier.issn13594311
dc.identifier.urihttp://hdl.handle.net/20.500.12416/6897
dc.identifier.volume223en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Thermal Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFerro-PCMen_US
dc.subjectHexagonal Shapeden_US
dc.subjectMagneto-Thermal-Convectionen_US
dc.subjectMelting Processen_US
dc.subjectUniform Magnetic Fielden_US
dc.titleNumerical investigation of magneto-thermal-convection impact on phase change phenomenon of Nano-PCM within a hexagonal shaped thermal energy storagetr_TR
dc.titleNumerical Investigation of Magneto-Thermal Impact on Phase Change Phenomenon of Nano-Pcm Within a Hexagonal Shaped Thermal Energy Storageen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: