Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Projectile motion using three parameter Mittag-Leffler function calculus

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In the present work, we study the motion of the projectile using the regularized Prabhakar derivative of order beta. The correlation of physical quantities with units of measurement creates an obstacle in solving some fractional differential equations, as the solutions presented mathematically may not have a physical meaning. To overcome this problem and maintain dimensions of physical quantities, an auxiliary parameter sigma is usually used. We obtain analytical solutions of the velocity fractional differential system in terms of the three parameters Mittag-Leffler function denoted Ea ,beta(z). We recover the cases when applying Caputo and ordinary derivatives. (c) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Description

Belgacem, Rachid/0000-0002-1697-4075; Ahmed, Bokhari/0000-0002-0402-5542

Keywords

Projectile Motion, Prabhakar Derivative, Three Mittag-Leffler Functions, Sumudu Transform

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Bokhari, Ahmed;...et.al. (2022). "Projectile motion using three parameter Mittag-Leffler function calculus", Mathematics and Computers in Simulation, Vol.195, pp.22-30.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

195

Issue

Start Page

22

End Page

30