Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The fractional features of a harmonic oscillator with position-dependent mass

dc.authorid Jajarmi, Amin/0000-0003-2768-840X
dc.authorid Sajjadi, Samaneh Sadat/0000-0001-7215-885X
dc.authorid Asad, Jihad/0000-0002-6862-1634
dc.authorscopusid 7005872966
dc.authorscopusid 34880044900
dc.authorscopusid 56306064100
dc.authorscopusid 8898843900
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Jajarmi, Amin/O-7701-2019
dc.authorwosid Sajjadi, Samaneh/Aad-3326-2020
dc.authorwosid Asad, Jihad/F-5680-2011
dc.authorwosid Asad, Jihad/P-2975-2016
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jajarmi, Amin
dc.contributor.author Sajjadi, Samaneh Sadat
dc.contributor.author Asad, Jihad H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-01-28T12:20:08Z
dc.date.available 2021-01-28T12:20:08Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania; [Jajarmi, Amin] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran; [Sajjadi, Samaneh Sadat] Hakim Sabzevari Univ, Dept Elect & Comp Engn, Sabzevar, Iran; [Asad, Jihad H.] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, POB 7, Tulkarm, Palestine en_US
dc.description Jajarmi, Amin/0000-0003-2768-840X; Sajjadi, Samaneh Sadat/0000-0001-7215-885X; Asad, Jihad/0000-0002-6862-1634 en_US
dc.description.abstract In this study, a harmonic oscillator with position-dependent mass is investigated. Firstly, as an introduction, we give a full description of the system by constructing its classical Lagrangian; thereupon, we derive the related classical equations of motion such as the classical Euler-Lagrange equations. Secondly, we fractionalize the classical Lagrangian of the system, and then we obtain the corresponding fractional Euler-Lagrange equations (FELEs). As a final step, we give the numerical simulations corresponding to the FELEs within different fractional operators. Numerical results based on the Caputo and the Atangana-Baleanu-Caputo (ABC) fractional derivatives are given to verify the theoretical analysis. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru...et al. (2020). "The fractional features of a harmonic oscillator with position-dependent mass", Communications in Theoretical Physics, Vol. 72, No. 5. en_US
dc.identifier.doi 10.1088/1572-9494/ab7700
dc.identifier.issn 0253-6102
dc.identifier.issn 1572-9494
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85084537590
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1088/1572-9494/ab7700
dc.identifier.volume 72 en_US
dc.identifier.wos WOS:000523450100001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Iop Publishing Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 147
dc.subject Position-Dependent Mass en_US
dc.subject Harmonic Oscillator en_US
dc.subject Euler-Lagrange Equations en_US
dc.subject Fractional Derivative en_US
dc.title The fractional features of a harmonic oscillator with position-dependent mass tr_TR
dc.title The Fractional Features of a Harmonic Oscillator With Position-Dependent Mass en_US
dc.type Article en_US
dc.wos.citedbyCount 126
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: