Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Al-Omari, Shrideh K. Q.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-05-02T04:57:53Z
dc.date.accessioned 2025-09-18T14:10:25Z
dc.date.available 2020-05-02T04:57:53Z
dc.date.available 2025-09-18T14:10:25Z
dc.date.issued 2020
dc.description Al-Omari, Shrideh/0000-0001-8955-5552 en_US
dc.description.abstract In this paper, we aim to discuss the classical theory of the quadratic-phase integral operator on sets of integrable Boehmians. We provide delta sequences and derive convolution theorems by using certain convolution products of weight functions of exponential type. Meanwhile, we make a free use of the delta sequences and the convolution theorem to derive the prerequisite axioms, which essentially establish the Boehmian spaces of the generalized quadratic-phase integral operator. Further, we nominate two continuous embeddings between the integrable set of functions and the integrable set of Boehmians. Furthermore, we introduce the definition and the properties of the generalized quadratic-phase integral operator and obtain an inversion formula in the class of Boehmians. en_US
dc.description.publishedMonth 5
dc.identifier.citation Al-Omari, S.K.Q.; Baleanu, D., "A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions", Mathematical Methods in the Applied Sciences, Vol. 43, No. 7, pp. 4168-4176, (2020). en_US
dc.identifier.doi 10.1002/mma.6181
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.scopus 2-s2.0-85079403036
dc.identifier.uri https://doi.org/10.1002/mma.6181
dc.identifier.uri https://hdl.handle.net/20.500.12416/13665
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Boehmian en_US
dc.subject Polynomial en_US
dc.subject Quadratic-Phase Integral en_US
dc.subject Special Affine Fourier Integral en_US
dc.subject Ultraboehmian en_US
dc.title A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions en_US
dc.title A Quadratic-Phase Integral Operator for Sets of Generalized Integrable Functions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Al-Omari, Shrideh/0000-0001-8955-5552
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 14828685700
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Al-Omari, Shrideh/E-5065-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Al-Omari, Shrideh K. Q.] Al Balqa Appl Univ, Fac Engn Technol, Dept Phys & Basic Sci, Amman, Jordan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey en_US
gdc.description.endpage 4176 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 4168 en_US
gdc.description.volume 43 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3005604145
gdc.identifier.wos WOS:000512529900001
gdc.openalex.fwci 1.1042474
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 2
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files