FIXED POINT ON CONVEX b-METRIC SPACE VIA ADMISSIBLE MAPPINGS
dc.contributor.author | Karapınar, Erdal | |
dc.contributor.author | Fulga, Andreea | |
dc.contributor.authorID | 19184 | tr_TR |
dc.date.accessioned | 2022-04-25T12:24:53Z | |
dc.date.available | 2022-04-25T12:24:53Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | In this manuscript, we define a convex admissible mapping. Using this notion, we consider specific contraction involving rational terms via convex admissible mapping. We investigate the necessary and sufficient requirement to guarantee a fixed point in the framework of convex b-metric spaces. | en_US |
dc.identifier.citation | Karapınar, Erdal; Fulga, Andreea (2021). "FIXED POINT ON CONVEX b-METRIC SPACE VIA ADMISSIBLE MAPPINGS", Twms Journal of Pure and Applied Mathematics, Vol. 12, No. 2, pp. 254-264. | en_US |
dc.identifier.doi | " | |
dc.identifier.endpage | 264 | en_US |
dc.identifier.issn | 2219-1259 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 254 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/5441 | |
dc.identifier.volume | 12 | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Twms Journal of Pure and Applied Mathematics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convex Structure | en_US |
dc.subject | Fixed Point Theorems | en_US |
dc.subject | B-Metric | en_US |
dc.title | FIXED POINT ON CONVEX b-METRIC SPACE VIA ADMISSIBLE MAPPINGS | tr_TR |
dc.title | Fixed Point on Convex B-Metric Space Via Admissible Mappings | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8ceeddcf-e8f8-49b5-9561-fae8cd8796d2 | |
relation.isAuthorOfPublication.latestForDiscovery | 8ceeddcf-e8f8-49b5-9561-fae8cd8796d2 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: