A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations
dc.authorid | Amiri, Sadegh/0000-0002-3910-5497 | |
dc.authorid | Hajipour, Mojtaba/0000-0002-7223-9577 | |
dc.authorscopusid | 48560957600 | |
dc.authorscopusid | 36455808200 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Amiri, Sadegh/Aad-4813-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Hajipour, Mojtaba/E-1417-2015 | |
dc.contributor.author | Amiri, Sadegh | |
dc.contributor.author | Hajipour, Mojtaba | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-05-06T06:40:36Z | |
dc.date.available | 2020-05-06T06:40:36Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Amiri, Sadegh] Shahid Sattari Aeronaut Univ Sci & Technol, Dept Basic Sci, POB 13846-63113, Tehran, Iran; [Hajipour, Mojtaba] Sahand Univ Technol, Dept Math, POB 51335-1996, Tabriz, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Baleanu, Dumitru] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China | en_US |
dc.description | Amiri, Sadegh/0000-0002-3910-5497; Hajipour, Mojtaba/0000-0002-7223-9577 | en_US |
dc.description.abstract | The aim of this paper is to investigate an efficient numerical method based on a novel shifted piecewise cosine basis for solving Volterra-Fredholm integral equations of the second kind. Using operational matrices of integration for the proposed basis functions, this integral equation is transformed into a system of nonlinear algebraic equations. The convergence and error analysis of the proposed method are studied. Some comparative results are provided to verify the efficiency of the presented method. (C) 2019 Elsevier Inc. All rights reserved. | en_US |
dc.description.publishedMonth | 4 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Amiri, S.; Hajipour, M.; Baleanu, D.,"A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations", Applied Mathematics and Computation, Vol. 370, (2020). | en_US |
dc.identifier.doi | 10.1016/j.amc.2019.124915 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.scopus | 2-s2.0-85076261557 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2019.124915 | |
dc.identifier.volume | 370 | en_US |
dc.identifier.wos | WOS:000502588900019 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 20 | |
dc.subject | Volterra-Fredholm Integral Equations | en_US |
dc.subject | Piecewise Cosine Basis | en_US |
dc.subject | Nonlinear Equations | en_US |
dc.title | A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations | tr_TR |
dc.title | A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra-Fredholm Integral Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 17 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: