Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations

dc.authorid Amiri, Sadegh/0000-0002-3910-5497
dc.authorid Hajipour, Mojtaba/0000-0002-7223-9577
dc.authorscopusid 48560957600
dc.authorscopusid 36455808200
dc.authorscopusid 7005872966
dc.authorwosid Amiri, Sadegh/Aad-4813-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Hajipour, Mojtaba/E-1417-2015
dc.contributor.author Amiri, Sadegh
dc.contributor.author Hajipour, Mojtaba
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-05-06T06:40:36Z
dc.date.available 2020-05-06T06:40:36Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Amiri, Sadegh] Shahid Sattari Aeronaut Univ Sci & Technol, Dept Basic Sci, POB 13846-63113, Tehran, Iran; [Hajipour, Mojtaba] Sahand Univ Technol, Dept Math, POB 51335-1996, Tabriz, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Baleanu, Dumitru] Hohai Univ, Inst Soft Matter Mech, Dept Engn Mech, Nanjing 210098, Jiangsu, Peoples R China en_US
dc.description Amiri, Sadegh/0000-0002-3910-5497; Hajipour, Mojtaba/0000-0002-7223-9577 en_US
dc.description.abstract The aim of this paper is to investigate an efficient numerical method based on a novel shifted piecewise cosine basis for solving Volterra-Fredholm integral equations of the second kind. Using operational matrices of integration for the proposed basis functions, this integral equation is transformed into a system of nonlinear algebraic equations. The convergence and error analysis of the proposed method are studied. Some comparative results are provided to verify the efficiency of the presented method. (C) 2019 Elsevier Inc. All rights reserved. en_US
dc.description.publishedMonth 4
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Amiri, S.; Hajipour, M.; Baleanu, D.,"A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations", Applied Mathematics and Computation, Vol. 370, (2020). en_US
dc.identifier.doi 10.1016/j.amc.2019.124915
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-85076261557
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.amc.2019.124915
dc.identifier.volume 370 en_US
dc.identifier.wos WOS:000502588900019
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 20
dc.subject Volterra-Fredholm Integral Equations en_US
dc.subject Piecewise Cosine Basis en_US
dc.subject Nonlinear Equations en_US
dc.title A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra–Fredholm İntegral Equations tr_TR
dc.title A Spectral Collocation Method With Piecewise Trigonometric Basis Functions for Nonlinear Volterra-Fredholm Integral Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 17
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: