Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI
dc.authorid | Shaiba, Hadil/0000-0003-1652-6579 | |
dc.authorscopusid | 36179737700 | |
dc.authorscopusid | 57204916510 | |
dc.authorscopusid | 57203919884 | |
dc.authorscopusid | 16319225300 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Jalab, Hamid/B-5285-2010 | |
dc.authorwosid | Ibrahim, Rabha/D-3312-2017 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Shaiba, Hadil/Hkn-8342-2023 | |
dc.contributor.author | Jalab, Hamid A. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Al-Shamasneh, Ala'a R. | |
dc.contributor.author | Shaiba, Hadil | |
dc.contributor.author | Ibrahim, Rabha W. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-04-29T12:58:01Z | |
dc.date.available | 2022-04-29T12:58:01Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Jalab, Hamid A.; Al-Shamasneh, Ala'a R.] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia; [Shaiba, Hadil] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 84428, Saudi Arabia; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City 758307, Vietnam; [Ibrahim, Rabha W.] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 758307, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description | Shaiba, Hadil/0000-0003-1652-6579 | en_US |
dc.description.abstract | Recently, many rapid developments in digital medical imaging have made further contributions to health care systems. The segmentation of regions of interest in medical images plays a vital role in assisting doctors with their medical diagnoses. Many factors like image contrast and quality affect the result of image segmentation. Due to that, image contrast remains a challenging problem for image segmentation. This study presents a new image enhancement model based on fractional Renyi entropy for the segmentation of kidney MRI scans. The proposed work consists of two stages: enhancement by fractional Renyi entropy, and MRI Kidney deep segmentation. The proposed enhancement model exploits the pixel's probability representations for image enhancement. Since fractional Renyi entropy involves fractional calculus that has the ability to model the non-linear complexity problem to preserve the spatial relationship between pixels, yielding an overall better details of the kidney MRI scans. In the second stage, the deep learning kidney segmentation model is designed to segment kidney regions in MRI scans. The experimental results showed an average of 95.60% dice similarity index coefficient, which indicates best overlap between the segmented bodies with the ground truth. It is therefore concluded that the proposed enhancement model is suitable and effective for improving the kidney segmentation performance. | en_US |
dc.description.sponsorship | deanship of scientific research at princess Nourah bint Abdulrahman University | en_US |
dc.description.sponsorship | This research was funded by the deanship of scientific research at princess Nourah bint Abdulrahman University through the fast-track research-funding program. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Jalab, Hamid A...et al. (2021). "Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI", Computers, Materials and Continua, Vol. 67, no. 2, pp. 2061-2075. | en_US |
dc.identifier.doi | 10.32604/cmc.2021.015170 | |
dc.identifier.endpage | 2075 | en_US |
dc.identifier.issn | 1546-2218 | |
dc.identifier.issn | 1546-2226 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85102529695 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 2061 | en_US |
dc.identifier.uri | https://doi.org/10.32604/cmc.2021.015170 | |
dc.identifier.volume | 67 | en_US |
dc.identifier.wos | WOS:000616713000009 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Tech Science Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 9 | |
dc.subject | Fractional Calculus | en_US |
dc.subject | Renyi Entropy | en_US |
dc.subject | Convolution Neural Networks | en_US |
dc.subject | Mri Kidney Segmentation | en_US |
dc.title | Fractional Rényi Entropy Image Enhancement for Deep Segmentation of Kidney MRI | tr_TR |
dc.title | Fractional Renyi Entropy Image Enhancement for Deep Segmentation of Kidney Mri | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 10 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |