Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new robust Harris Hawk optimization algorithm for large quadratic assignment problems

dc.contributor.authorDokeroglu, Tansel
dc.contributor.authorOzdemir, Yavuz Selim
dc.contributor.authorID234173tr_TR
dc.date.accessioned2023-11-23T08:05:06Z
dc.date.available2023-11-23T08:05:06Z
dc.date.issued2023
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractHarris Hawk optimization (HHO) is a new robust metaheuristic algorithm proposed for the solution of large intractable combinatorial optimization problems. The hawks are cooperative birds and use many intelligent hunting techniques. This study proposes new HHO algorithms for solving the well-known quadratic assignment problem (QAP). Large instances of the QAP have not been solved exactly yet. We implement HHO algorithms with robust tabu search (HHO-RTS) and introduce new operators that simulate the actions of hawks. We also developed an island parallel version of the HHO-RTS algorithm using the message passing interface. We verify the performance of our proposed algorithms on the QAPLIB benchmark library. One hundred and twenty-five of 135 problems are solved optimally, and the average deviation of all the problems is observed to be 0.020%. The HHO-RTS algorithm is a robust algorithm compared to recent studies in the literature.en_US
dc.description.publishedMonth6
dc.identifier.citationDokeroglu, Tansel; Ozdemir, Yavuz Selim. (2023). "A new robust Harris Hawk optimization algorithm for large quadratic assignment problems", Neural Computing & Applications, Vol. 35, No. 17, pp. 12531-12544.en_US
dc.identifier.doi10.1007/s00521-023-08387-2
dc.identifier.endpage12544en_US
dc.identifier.issn0941-0643
dc.identifier.issue17en_US
dc.identifier.startpage12531en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/6581
dc.identifier.volume35en_US
dc.language.isoenen_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHarris Hawk Optimizationen_US
dc.subjectQuadratic Assignment Problemen_US
dc.subjectMetaheuristictabu Searchen_US
dc.titleA new robust Harris Hawk optimization algorithm for large quadratic assignment problemstr_TR
dc.titleA New Robust Harris Hawk Optimization Algorithm for Large Quadratic Assignment Problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: