Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A new robust Harris Hawk optimization algorithm for large quadratic assignment problems

dc.authorscopusid 55569137100
dc.authorscopusid 54984000100
dc.authorwosid Dökeroğlu, Tansel/Aaw-7857-2020
dc.authorwosid Ozdemir, Yavuz/Aat-3675-2021
dc.contributor.author Dokeroglu, Tansel
dc.contributor.author Ozdemir, Yavuz Selim
dc.contributor.authorID 234173 tr_TR
dc.date.accessioned 2023-11-23T08:05:06Z
dc.date.available 2023-11-23T08:05:06Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Dokeroglu, Tansel] Cankaya Univ, Software Engn Dept, Ankara, Turkiye; [Ozdemir, Yavuz Selim] Ankara Sci Univ, Ind Engn Dept, Ankara, Turkiye en_US
dc.description.abstract Harris Hawk optimization (HHO) is a new robust metaheuristic algorithm proposed for the solution of large intractable combinatorial optimization problems. The hawks are cooperative birds and use many intelligent hunting techniques. This study proposes new HHO algorithms for solving the well-known quadratic assignment problem (QAP). Large instances of the QAP have not been solved exactly yet. We implement HHO algorithms with robust tabu search (HHO-RTS) and introduce new operators that simulate the actions of hawks. We also developed an island parallel version of the HHO-RTS algorithm using the message passing interface. We verify the performance of our proposed algorithms on the QAPLIB benchmark library. One hundred and twenty-five of 135 problems are solved optimally, and the average deviation of all the problems is observed to be 0.020%. The HHO-RTS algorithm is a robust algorithm compared to recent studies in the literature. en_US
dc.description.publishedMonth 6
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Dokeroglu, Tansel; Ozdemir, Yavuz Selim. (2023). "A new robust Harris Hawk optimization algorithm for large quadratic assignment problems", Neural Computing & Applications, Vol. 35, No. 17, pp. 12531-12544. en_US
dc.identifier.doi 10.1007/s00521-023-08387-2
dc.identifier.endpage 12544 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 17 en_US
dc.identifier.scopus 2-s2.0-85149107207
dc.identifier.scopusquality Q1
dc.identifier.startpage 12531 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-023-08387-2
dc.identifier.volume 35 en_US
dc.identifier.wos WOS:000943008600004
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Harris Hawk Optimization en_US
dc.subject Quadratic Assignment Problem en_US
dc.subject Metaheuristic en_US
dc.subject Tabu Search en_US
dc.title A new robust Harris Hawk optimization algorithm for large quadratic assignment problems tr_TR
dc.title A New Robust Harris Hawk Optimization Algorithm for Large Quadratic Assignment Problems en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: