Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Estimating parameters of a multiple aoutoregressive model by the modified maximum likelihood method

dc.authorid , Ozlem/0000-0003-0821-150X
dc.authorscopusid 34970726800
dc.authorscopusid 6603740998
dc.authorwosid Turker Bayrak, Ozlem/Abc-1373-2020
dc.contributor.author Bayrak, Oezlem Tuerker
dc.contributor.author Akkaya, Aysen D.
dc.contributor.authorID 56416 tr_TR
dc.contributor.authorID 2337 tr_TR
dc.date.accessioned 2016-06-16T07:57:45Z
dc.date.available 2016-06-16T07:57:45Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Bayrak, Oezlem Tuerker] Cankaya Univ, Dept Ind Engn, TR-06530 Ankara, Turkey; [Akkaya, Aysen D.] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey en_US
dc.description Ozlem/0000-0003-0821-150X en_US
dc.description.abstract We consider a multiple autoregressive model with non-normal error distributions, the latter being more prevalent in practice than the usually assumed normal distribution. Since the maximum likelihood equations have convergence problems (Puthenpura and Sinha, 1986) [11], we work Out modified maximum likelihood equations by expressing the maximum likelihood equations in terms of ordered residuals and linearizing intractable nonlinear functions (Tiku and Suresh, 1992) [8]. The solutions, called modified maximum estimators, are explicit functions of sample observations and therefore easy to compute. They are under some very general regularity conditions asymptotically unbiased and efficient (Vaughan and Tiku, 2000) [4]. We show that for small sample sizes, they have negligible bias and are considerably more efficient than the traditional least Squares estimators. We show that Our estimators are robust to plausible deviations from an assumed distribution and are therefore enormously advantageous as compared to the least squares estimation. We give a real life example. (C) 2009 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 2
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Türker Bayrak, Ö., Akkaya, A.D. (2010). Estimating parameters of a multiple aoutoregressive model by the modified maximum likelihood method. Journal of Computational and Applied Mathematics, 233(8), 1763-1772. http://dx.doi.org/10.1016/j.cam.2009.09.013 en_US
dc.identifier.doi 10.1016/j.cam.2009.09.013
dc.identifier.endpage 1772 en_US
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-70450265647
dc.identifier.scopusquality Q1
dc.identifier.startpage 1763 en_US
dc.identifier.uri https://doi.org/10.1016/j.cam.2009.09.013
dc.identifier.volume 233 en_US
dc.identifier.wos WOS:000273250300006
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 12
dc.subject Autoregression en_US
dc.subject Student'S T en_US
dc.subject Generalized Logistic en_US
dc.subject Modified Likelihood en_US
dc.subject Non-Normality en_US
dc.title Estimating parameters of a multiple aoutoregressive model by the modified maximum likelihood method tr_TR
dc.title Estimating Parameters of a Multiple Autoregressive Model by the Modified Maximum Likelihood Method en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: