Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Estimating parameters of a multiple aoutoregressive model by the modified maximum likelihood method

dc.contributor.authorTürker Bayrak, Özlem
dc.contributor.authorDener Akkaya, Ayşen
dc.contributor.authorID56416tr_TR
dc.contributor.authorID2337tr_TR
dc.date.accessioned2016-06-16T07:57:45Z
dc.date.available2016-06-16T07:57:45Z
dc.date.issued2010
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.description.abstractAbstract: We consider a multiple autoregressive model with non-normal error distributions, the latter being more prevalent in practice than the usually assumed normal distribution. Since the maximum likelihood equations have convergence problems (Puthenpura and Sinha, 1986) , we work out modified maximum likelihood equations by expressing the maximum likelihood equations in terms of ordered residuals and linearizing intractable nonlinear functions (Tiku and Suresh, 1992) . The solutions, called modified maximum estimators, are explicit functions of sample observations and therefore easy to compute. They are under some very general regularity conditions asymptotically unbiased and efficient (Vaughan and Tiku, 2000) . We show that for small sample sizes, they have negligible bias and are considerably more efficient than the traditional least squares estimators. We show that our estimators are robust to plausible deviations from an assumed distribution and are therefore enormously advantageous as compared to the least squares estimators. We give a real life exampleen_US
dc.description.publishedMonth2
dc.identifier.citationTürker Bayrak, Ö., Akkaya, A.D. (2010). Estimating parameters of a multiple aoutoregressive model by the modified maximum likelihood method. Journal of Computational and Applied Mathematics, 233(8), 1763-1772. http://dx.doi.org/10.1016/j.cam.2009.09.013en_US
dc.identifier.doi10.1016/j.cam.2009.09.013
dc.identifier.endpage1772en_US
dc.identifier.issn0377-0427
dc.identifier.issue8en_US
dc.identifier.startpage1763en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1119
dc.identifier.volume233en_US
dc.language.isoenen_US
dc.publisherElsevier Scienceen_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized Logisticen_US
dc.subjectModified Likelihooden_US
dc.subjectNon-Normalityen_US
dc.subjectStudent’sen_US
dc.subjectAutoregressionen_US
dc.titleEstimating parameters of a multiple aoutoregressive model by the modified maximum likelihood methodtr_TR
dc.titleEstimating Parameters of a Multiple Aoutoregressive Model by the Modified Maximum Likelihood Methoden_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: