Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Applications Of Gudermannian Neural Network For Solving The Sitr Fractal System

dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorUmar, Muhammad
dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2024-03-01T07:05:05Z
dc.date.available2024-03-01T07:05:05Z
dc.date.issued2021
dc.departmentÇankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThis study is related to explore the Gudermannian neural network (GNN) for solving a nonlinear SITR COVID-19 fractal system by using the optimization efficiencies of a genetic algorithm (GA), a global search technique and sequential quadratic programming (SQP) and a quick local search scheme, i.e. GNN-GA-SQP. The nonlinear SITR COVID-19 fractal system is dependent on four collections: "susceptible", "infected", "treatment"and "recovered". For the optimization procedures through the GNN-GA-SQP, a merit function is constructed using the nonlinear SITR COVID-19 fractal system and its corresponding initial conditions. The description of each collection of the nonlinear SITR COVID-19 fractal system is provided along with comprehensive detail. The comparison of the achieved numerical result performances of each collection of the nonlinear SITR COVID-19 fractal system is performed with the Adams results to verify the exactness of the designed computational GNN-GA-SQP. The statistical processes based on different operators are presented for 30 independent trials using 5 neurons to authenticate the consistency of the designed computational GNN-GA-SQP. Moreover, the graphs of absolute error (AE), performance indices, and convergence measures along with the boxplots and histograms are also plotted to check the stability, exactness and reliability of the designed computational GNN-GA-SQP.en_US
dc.description.publishedMonth12
dc.identifier.citationSabir, Zulqurnain;...et.al. (2021). "Applications Of Gudermannian Neural Network For Solving The Sitr Fractal System", Fractals, Vol.29, No.1.en_US
dc.identifier.doi10.1142/S0218348X21502509
dc.identifier.issn0218348X
dc.identifier.issue1en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7414
dc.identifier.volume29en_US
dc.language.isoenen_US
dc.relation.ispartofFractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic Algorithmen_US
dc.subjectGudermannian Functionen_US
dc.subjectNonlinearen_US
dc.subjectReference Solutionsen_US
dc.subjectSequential Quadratic Programmingen_US
dc.subjectSITR COVID-19 Fractal Systemen_US
dc.titleApplications Of Gudermannian Neural Network For Solving The Sitr Fractal Systemtr_TR
dc.titleApplications of Gudermannian Neural Network for Solving the Sitr Fractal Systemen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: