On L-p-solutions for a class of sequential fractional differential equations
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 7004046718 | |
dc.authorscopusid | 36013313700 | |
dc.authorwosid | Agarwal, Ravi/Aeq-9823-2022 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Mustafa, Octavian G. | |
dc.contributor.author | Agarwal, Ravi P. | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2017-02-17T07:40:41Z | |
dc.date.available | 2017-02-17T07:40:41Z | |
dc.date.issued | 2011 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Balgat Ankara, Turkey; [Mustafa, Octavian G.] Univ Craiova, DAL, Dept Math & Comp Sci, Craiova 200534, Romania; [Agarwal, Ravi P.] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA | en_US |
dc.description.abstract | Under some simple conditions on the coefficient a( t), we establish that the initial value problem ((0)D(t)(alpha)x)' + a(t)x = 0; t > 0; lim(t SE arrow 0)[t(1-alpha)x(t)] = 0 has no solution in L-p((1, +infinity), R), where p-1/p > alpha > 1/p and D-0(t)alpha designates the Riemann-Liouville derivative of order alpha Our result might be useful for developing a non-integer variant of H. Weyl's limit-circle/limit-point classification of differential equations. (C) 2011 Elsevier Inc. All rights reserved. | en_US |
dc.description.publishedMonth | 11 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, D...et al. (2011). On L-p-solutions for a class of sequential fractional differential equations. Applied Mathematics&Computation, 218(5), 2074-2081. http://dx.doi.org/ 10.1016/j.amc.2011.07.024 | en_US |
dc.identifier.doi | 10.1016/j.amc.2011.07.024 | |
dc.identifier.endpage | 2081 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-80052260699 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 2074 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2011.07.024 | |
dc.identifier.volume | 218 | en_US |
dc.identifier.wos | WOS:000294300800057 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 72 | |
dc.subject | Sequential Fractional Differential Equation | en_US |
dc.subject | L-P-Solution | en_US |
dc.subject | Limit-Circle/Limit-Point Classification Of Differential Equations | en_US |
dc.title | On L-p-solutions for a class of sequential fractional differential equations | tr_TR |
dc.title | On L<sup>p</Sup>-solutions for a Class of Sequential Fractional Differential Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 66 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: