Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations
dc.authorid | Wazwaz, Abdul-Majid/0000-0002-8325-7500 | |
dc.authorid | Kumar, Sachin/0000-0003-4451-3206 | |
dc.authorid | Osman, M. S./0000-0002-5783-0940 | |
dc.authorscopusid | 57221637503 | |
dc.authorscopusid | 57254187600 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55646409100 | |
dc.authorscopusid | 7006540445 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Wazwaz, Abdul-Majid/Act-2110-2022 | |
dc.authorwosid | Kumar, Sachin/Aap-4270-2021 | |
dc.authorwosid | Osman, M. S./E-3084-2013 | |
dc.contributor.author | Kumar, Sachin | |
dc.contributor.author | Dhiman, Shubham K. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Osman, Mohamed S. | |
dc.contributor.author | Wazwaz, Abdul-Majid | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-04-03T13:34:41Z | |
dc.date.available | 2024-04-03T13:34:41Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Kumar, Sachin; Dhiman, Shubham K.] Univ Delhi, Fac Math Sci, Dept Math, Delhi 110007, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Osman, Mohamed S.] Umm Al Qura Univ, Fac Appl Sci, Dept Math, Mecca 21955, Saudi Arabia; [Osman, Mohamed S.] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt; [Wazwaz, Abdul-Majid] St Xavier Univ, Dept Math, Chicago, IL 60655 USA | en_US |
dc.description | Wazwaz, Abdul-Majid/0000-0002-8325-7500; Kumar, Sachin/0000-0003-4451-3206; Osman, M. S./0000-0002-5783-0940 | en_US |
dc.description.abstract | This investigation focuses on two novel Kadomtsev-Petviashvili (KP) equations with time-dependent variable coefficients that describe the nonlinear wave propagation of small-amplitude surface waves in narrow channels or large straits with slowly varying width and depth and non-vanishing vorticity. These two variable coefficients, Kadomtsev-Petviashvili (VCKP) equations in (2+1)-dimensions, are the main extensions of the KP equation. Applying the Lie symmetry technique, we carry out infinitesimal generators, potential vector fields, and various similarity reductions of the considered VCKP equations. These VCKP equations are converted into nonlinear ODEs via two similarity reductions. The closed-form analytic solutions are achieved, including in the shape of distinct complex wave structures of solitons, dark and bright soliton shapes, double W-shaped soliton shapes, multi-peakon shapes, curved-shaped multi-wave solitons, and novel solitary wave solitons. All the obtained solutions are verified and validated by using back substitution to the original equation through Wolfram Mathematica. We analyze the dynamical behaviors of these obtained solutions with some three-dimensional graphics via numerical simulation. The obtained variable coefficient solutions are more relevant and useful for understanding the dynamical structures of nonlinear KP equations and shallow water wave models. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.sponsorship | Deanship of Scientific Research at Umm Al-Qura University [22UQU4410172DSR05] | en_US |
dc.description.sponsorship | The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4410172DSR05). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Kumar, Sachin;...et.al. (2022). "Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations", Symmetry, Vol.14, No.3. | en_US |
dc.identifier.doi | 10.3390/sym14030597 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85127307631 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/sym14030597 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:000776414500001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 92 | |
dc.subject | Kp Equations With Variable Coefficients | en_US |
dc.subject | Lie Symmetry Technique | en_US |
dc.subject | Exact Solutions | en_US |
dc.subject | Solitons | en_US |
dc.title | Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations | tr_TR |
dc.title | Lie Symmetries, Closed-Form Solutions, and Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional Kp Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 83 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |