Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On fractional derivatives with generalized Mittag-Leffler kernels

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Pushpa Publishing House

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Fractional derivatives with three parameter generalized Mittag-Leffler kernels and their properties are studied. The corresponding integral operators are obtained with the help of Laplace transforms. The action of the presented fractional integrals on the Caputo and Riemann type derivatives with three parameter Mittag-Leffler kernels is analyzed. Integration by parts formulas in the sense of Riemann and Caputo are proved and then used to formulate the fractional Euler-Lagrange equations with an illustrative example. Certain nonconstant functions whose fractional derivatives are zero are determined as well.

Description

Keywords

Fractional Derivatives With Generalized Mittag-Leffler Kernels, Generalized Mittag-Leffler Function, Laplace Transform Convolution, Euler-Lagrange Equation, Integration By Parts

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Abdeljawad, Thabet; Baleanu, Dumitru (2018). On fractional derivatives with generalized Mittag-Leffler kernels, Advances in Difference Equations.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

Issue

Start Page

End Page