Variable Stepsize Construction of a Two-Step Optimized Hybrid Block Method With Relative Stability
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57204460693 | |
dc.authorscopusid | 57226820219 | |
dc.authorscopusid | 55613317300 | |
dc.authorwosid | Soomro, Amanullah/Abg-3010-2021 | |
dc.authorwosid | Qureshi, Sania/R-6710-2018 | |
dc.authorwosid | Shaikh, Asif Ali/Jht-9084-2023 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Qureshi, Sania | |
dc.contributor.author | Soomro, Amanullah | |
dc.contributor.author | Shaikh, Asif Ali | |
dc.date.accessioned | 2025-05-11T17:18:07Z | |
dc.date.available | 2025-05-11T17:18:07Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Qureshi, Sania; Soomro, Amanullah; Shaikh, Asif Ali] Mehran Univ Engn & Technol, Dept Basic Sci & Related Studies, Jamshoro 76062, Pakistan; [Qureshi, Sania] Near East Univ TRNC, Dept Math, Mersin 10, Nicosia, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan | en_US |
dc.description.abstract | Several numerical techniques for solving initial value problems arise in physical and natural sciences. In many cases, these problems require numerical treatment to achieve the required solution. However, in today's modern era, numerical algorithms must be cost-effective with suitable convergence and stability features. At least the fifth-order convergent two-step optimized hybrid block method recently proposed in the literature is formulated in this research work with its variable stepsize approach for numerically solving first- and higher-order initial-value problems in ordinary differential equations. It has been constructed using a continuous approximation achieved through interpolation and collocation techniques at two intra-step points chosen by optimizing the local truncation errors of the main formulae. The theoretical analysis, including order stars for the relative stability, is considered. Both fixed and variable stepsize approaches are presented to observe the superiority of the latter approach. When tested on challenging differential systems, the method gives better accuracy, as revealed by the efficiency plots and the error distribution tables, including the machine time measured in seconds. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1515/phys-2022-0209 | |
dc.identifier.endpage | 1126 | en_US |
dc.identifier.issn | 2391-5471 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85141960670 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1112 | en_US |
dc.identifier.uri | https://doi.org/10.1515/phys-2022-0209 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9686 | |
dc.identifier.volume | 20 | en_US |
dc.identifier.wos | WOS:000877754400001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | de Gruyter Poland Sp Z O O | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 3 | |
dc.subject | Stiff Models | en_US |
dc.subject | Adaptive Stepsize | en_US |
dc.subject | A-Stability | en_US |
dc.subject | Optimal Intra-Step Points | en_US |
dc.subject | Order Stars | en_US |
dc.title | Variable Stepsize Construction of a Two-Step Optimized Hybrid Block Method With Relative Stability | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |