Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Nonnormal regression. II. Symmetric distributions

dc.contributor.authorTiku, M. L.
dc.contributor.authorIslam, M. Qamarul
dc.contributor.authorSelçuk, A. S.
dc.date.accessioned2020-04-02T19:50:00Z
dc.date.available2020-04-02T19:50:00Z
dc.date.issued2001
dc.departmentÇankaya Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, Ekonomi Bölümüen_US
dc.description.abstractSalient features of a family of short-tailed symmetric distributions, introduced recently by Tiku and Vaughan [1], are enunciated. Assuming the error distribution to be one of this family, the methodology of modified likelihood is used to derive MML estimators of parameters in a linear regression model. The estimators are shown to be efficient, and robust to inliers. This paper is essentially the first to achieve robustness to infers. The methodology is extended to long-tailed symmetric distributions and the resulting estimators are shown to be efficient, and robust to outliers. This paper should be read in conjunction with Islam et al. [2] who develop modified likelihood methodology for skew distributions in the context of linear regression.en_US
dc.identifier.citationTiku, ML; Islam, MQ; Selcuk, AS, "Nonnormal regression. II. Symmetric distributions", Communications in Statistics-Theory and Methods, Vol. 30, No. 6, pp. 1021-1045, (2001).en_US
dc.identifier.doi10.1081/STA-100104348
dc.identifier.endpage1045en_US
dc.identifier.issn0361-0926
dc.identifier.issue6en_US
dc.identifier.startpage1021en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2856
dc.identifier.volume30en_US
dc.language.isoenen_US
dc.publisherTaylor&Francis INCen_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSymmetric Distributionsen_US
dc.subjectModified Likelihooden_US
dc.subjectRegressionen_US
dc.subjectRobustnessen_US
dc.subjectKurtosisen_US
dc.subjectHypothesis Testingen_US
dc.subjectInliersen_US
dc.subjectOutliersen_US
dc.subjectNonnormalityen_US
dc.titleNonnormal regression. II. Symmetric distributionstr_TR
dc.titleNonnormal Regression. Ii. Symmetric Distributionsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: