Analysis Of Fractional Non-Linear Diffusion Behaviors Based On Adomian Polynomials
dc.authorid | Wu, Guo-Cheng/0000-0002-1946-6770 | |
dc.authorscopusid | 23390775700 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55734665000 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Wu, Guo-Cheng/T-9088-2017 | |
dc.contributor.author | Wu, Guo-Cheng | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Luo, Wei-Hua | |
dc.contributor.authorID | 56389 | tr_TR |
dc.date.accessioned | 2019-12-19T13:51:29Z | |
dc.date.available | 2019-12-19T13:51:29Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Wu, Guo-Cheng; Luo, Wei-Hua] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
dc.description | Wu, Guo-Cheng/0000-0002-1946-6770 | en_US |
dc.description.abstract | A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders. | en_US |
dc.description.sponsorship | NSFC [11301257]; Scientific Research Fund of Sichuan Provincial Education Department [15ZA0288] | en_US |
dc.description.sponsorship | The study was financially supported by the NSFC (Grant No. 11301257) and the Scientific Research Fund of Sichuan Provincial Education Department (No. 15ZA0288). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Wu, Guo-Cheng; Baleanu, Dumitru; Luo, Wei-Hua (2017). Analysis Of Fractional Non-Linear Diffusion Behaviors Based On Adomian Polynomials, Thermal Science, 21(2), 813-817. | en_US |
dc.identifier.doi | 10.2298/TSCI160416301W | |
dc.identifier.endpage | 817 | en_US |
dc.identifier.issn | 0354-9836 | |
dc.identifier.issn | 2334-7163 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85019728813 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 813 | en_US |
dc.identifier.uri | https://doi.org/10.2298/TSCI160416301W | |
dc.identifier.volume | 21 | en_US |
dc.identifier.wos | WOS:000400720200006 | |
dc.identifier.wosquality | Q4 | |
dc.language.iso | en | en_US |
dc.publisher | Vinca inst Nuclear Sci | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractional Calculus | en_US |
dc.subject | Two Fractional Terms | en_US |
dc.subject | Numerical Solutions | en_US |
dc.subject | Adomian Decomposition Method | en_US |
dc.subject | Taylor Series Of Fractional Order | en_US |
dc.title | Analysis Of Fractional Non-Linear Diffusion Behaviors Based On Adomian Polynomials | tr_TR |
dc.title | Analysis of Fractional Non-Linear Diffusion Behaviors Based on Adomian Polynomials | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |