A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel
dc.authorid | Shiri, Babak/0000-0003-2249-282X | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 55614612800 | |
dc.authorscopusid | 23152241800 | |
dc.authorscopusid | 57045880100 | |
dc.authorwosid | Srivastava, Hari/N-9532-2013 | |
dc.authorwosid | Shiri, Babak/T-7172-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Shiri, B. | |
dc.contributor.author | Srivastava, H. M. | |
dc.contributor.author | Al Qurashi, M. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2019-12-20T12:36:07Z | |
dc.date.available | 2019-12-20T12:36:07Z | |
dc.date.issued | 2018 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada; [Srivastava, H. M.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Al Qurashi, M.] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia | en_US |
dc.description | Shiri, Babak/0000-0003-2249-282X | en_US |
dc.description.abstract | In this paper, we solve a system of fractional differential equations within a fractional derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply the Chebyshev polynomials as a base and obtain the necessary operational matrix of fractional integral using the Clenshaw-Curtis formula. By applying the operational matrix, we obtain a system of linear algebraic equations. The approximate solution is computed by solving this system. The regularity of the solution investigated and a convergence analysis is provided. Numerical examples are provided to show the effectiveness and efficiency of the method. | en_US |
dc.description.publishedMonth | 10 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, D...et al. (2018). A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel, Advances in Difference Equations. | en_US |
dc.identifier.doi | 10.1186/s13662-018-1822-5 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.scopus | 2-s2.0-85054485351 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-018-1822-5 | |
dc.identifier.wos | WOS:000449301100003 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 99 | |
dc.subject | System Of Fractional Differential Equations | en_US |
dc.subject | Chebyshev Polynomials | en_US |
dc.subject | Operational Matrices | en_US |
dc.subject | Mittag-Leffler Function | en_US |
dc.subject | Clenshaw-Curtis Formula | en_US |
dc.title | A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel | tr_TR |
dc.title | A Chebyshev Spectral Method Based on Operational Matrix for Fractional Differential Equations Involving Non-Singular Mittag-Leffler Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 72 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |