Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel

dc.authorid Shiri, Babak/0000-0003-2249-282X
dc.authorscopusid 7005872966
dc.authorscopusid 55614612800
dc.authorscopusid 23152241800
dc.authorscopusid 57045880100
dc.authorwosid Srivastava, Hari/N-9532-2013
dc.authorwosid Shiri, Babak/T-7172-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, D.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Shiri, B.
dc.contributor.author Srivastava, H. M.
dc.contributor.author Al Qurashi, M.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2019-12-20T12:36:07Z
dc.date.available 2019-12-20T12:36:07Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada; [Srivastava, H. M.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Al Qurashi, M.] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia en_US
dc.description Shiri, Babak/0000-0003-2249-282X en_US
dc.description.abstract In this paper, we solve a system of fractional differential equations within a fractional derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply the Chebyshev polynomials as a base and obtain the necessary operational matrix of fractional integral using the Clenshaw-Curtis formula. By applying the operational matrix, we obtain a system of linear algebraic equations. The approximate solution is computed by solving this system. The regularity of the solution investigated and a convergence analysis is provided. Numerical examples are provided to show the effectiveness and efficiency of the method. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, D...et al. (2018). A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel, Advances in Difference Equations. en_US
dc.identifier.doi 10.1186/s13662-018-1822-5
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-85054485351
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-018-1822-5
dc.identifier.wos WOS:000449301100003
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 99
dc.subject System Of Fractional Differential Equations en_US
dc.subject Chebyshev Polynomials en_US
dc.subject Operational Matrices en_US
dc.subject Mittag-Leffler Function en_US
dc.subject Clenshaw-Curtis Formula en_US
dc.title A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel tr_TR
dc.title A Chebyshev Spectral Method Based on Operational Matrix for Fractional Differential Equations Involving Non-Singular Mittag-Leffler Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 72
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu,Dumitru.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
Yazar sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: