Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Effect of beam types on the scintillations: A review

dc.contributor.authorBaykal, Yahya
dc.contributor.authorEyyuboğlu, Halil T.
dc.contributor.authorCai, Yangjian
dc.contributor.authorID7812tr_TR
dc.contributor.authorID7688tr_TR
dc.date.accessioned2020-04-02T20:35:30Z
dc.date.available2020-04-02T20:35:30Z
dc.date.issued2009
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliği Bölümüen_US
dc.description.abstractWhen different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh-Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh-Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.en_US
dc.identifier.citationBaykal, Yahya; Eyyuboğlu, Hal,l T., "Effect of beam types on the scintillations: A review", Atmospheric Propagation Of Electromagnetic Waves III, Vol.7200, (2009).en_US
dc.identifier.doi10.1117/12.811848
dc.identifier.isbn9780819474469
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/20.500.12416/2866
dc.identifier.volume7200en_US
dc.language.isoenen_US
dc.publisherSpie-Int Soc Optical Engineeringen_US
dc.relation.ispartofAtmospheric Propagation Of Electromagnetic Waves IIIen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAtmospheric Turbulenceen_US
dc.subjectGeneral Beamsen_US
dc.subjectAtmospheric Optics Telecommunication Linksen_US
dc.subjectScintillationsen_US
dc.titleEffect of beam types on the scintillations: A reviewtr_TR
dc.titleEffect of Beam Types on the Scintillations: a Reviewen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: