Duality of singular linear systems of fractional nabla difference equations
dc.authorscopusid | 55441482800 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Dassios, Ioannis K. | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru I. | |
dc.date.accessioned | 2017-03-29T11:03:21Z | |
dc.date.available | 2017-03-29T11:03:21Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Dassios, Ioannis K.] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland; [Dassios, Ioannis K.] Univ Coll Dublin, Elect Res Ctr, ERC, Dublin, Ireland; [Baleanu, Dumitru I.] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru I.] Inst Space Sci, Magurele, Romania | en_US |
dc.description.abstract | The main objective of this article is to provide a link between the solutions of an initial value problem of a linear singular system of fractional nabla difference equations, its proper dual system and its transposed dual system. By taking into consideration the case that the coefficients are square constant matrices with the leading coefficient singular, we study the prime system and by using the invariants of its pencil we give necessary and sufficient conditions for existence and uniqueness of solutions. After we prove that by using the pencil of the prime system we can study the existence and uniqueness of solutions of the proper dual system and the transposed dual system. Moreover their solutions, when they exist, can be explicitly represented without resorting to further processes of computations for each one separately. Finally, numerical examples are given based on a singular fractional nabla real dynamical system to justify our theory. (C) 2014 Elsevier Inc. All rights reserved. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.sponsorship | Science Foundation Ireland [09/SRC/E1780]; Science Foundation Ireland (SFI) [09/SRC/E1780] Funding Source: Science Foundation Ireland (SFI) | en_US |
dc.description.sponsorship | We would like to express our sincere gratitude to Professor G. Kalogeropoulos for his helpful and fruitful discussions that clearly improved this article. Moreover we would like to thank the anonymous referees for their comments and valuable suggestions. I. Dassios is supported by Science Foundation Ireland (award 09/SRC/E1780). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Dassios, I.K., Baleanu, D. (2015). Duality of singular linear systems of fractional nabla difference equations. Applied Mathematical Modelling, 39(14), 4180-4195. http://dx.doi.org/10.1016/j.apm.2014.12.039 | en_US |
dc.identifier.doi | 10.1016/j.apm.2014.12.039 | |
dc.identifier.endpage | 4195 | en_US |
dc.identifier.issn | 0307-904X | |
dc.identifier.issn | 1872-8480 | |
dc.identifier.issue | 14 | en_US |
dc.identifier.scopus | 2-s2.0-84930986838 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 4180 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.apm.2014.12.039 | |
dc.identifier.volume | 39 | en_US |
dc.identifier.wos | WOS:000356749200021 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractional Nabla Operator | en_US |
dc.subject | Initial Conditions | en_US |
dc.subject | Singular Systems | en_US |
dc.subject | Difference Equations | en_US |
dc.subject | Linear Discrete Time System | en_US |
dc.subject | Duality | en_US |
dc.title | Duality of singular linear systems of fractional nabla difference equations | tr_TR |
dc.title | Duality of Singular Linear Systems of Fractional Nabla Difference Equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: