Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Duality of singular linear systems of fractional nabla difference equations

dc.authorscopusid55441482800
dc.authorscopusid7005872966
dc.authorwosidBaleanu, Dumitru/B-9936-2012
dc.contributor.authorDassios, Ioannis K.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorBaleanu, Dumitru I.
dc.date.accessioned2017-03-29T11:03:21Z
dc.date.available2017-03-29T11:03:21Z
dc.date.issued2015
dc.departmentÇankaya Universityen_US
dc.department-temp[Dassios, Ioannis K.] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland; [Dassios, Ioannis K.] Univ Coll Dublin, Elect Res Ctr, ERC, Dublin, Ireland; [Baleanu, Dumitru I.] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru I.] Inst Space Sci, Magurele, Romaniaen_US
dc.description.abstractThe main objective of this article is to provide a link between the solutions of an initial value problem of a linear singular system of fractional nabla difference equations, its proper dual system and its transposed dual system. By taking into consideration the case that the coefficients are square constant matrices with the leading coefficient singular, we study the prime system and by using the invariants of its pencil we give necessary and sufficient conditions for existence and uniqueness of solutions. After we prove that by using the pencil of the prime system we can study the existence and uniqueness of solutions of the proper dual system and the transposed dual system. Moreover their solutions, when they exist, can be explicitly represented without resorting to further processes of computations for each one separately. Finally, numerical examples are given based on a singular fractional nabla real dynamical system to justify our theory. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.description.publishedMonth7
dc.description.sponsorshipScience Foundation Ireland [09/SRC/E1780]; Science Foundation Ireland (SFI) [09/SRC/E1780] Funding Source: Science Foundation Ireland (SFI)en_US
dc.description.sponsorshipWe would like to express our sincere gratitude to Professor G. Kalogeropoulos for his helpful and fruitful discussions that clearly improved this article. Moreover we would like to thank the anonymous referees for their comments and valuable suggestions. I. Dassios is supported by Science Foundation Ireland (award 09/SRC/E1780).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationDassios, I.K., Baleanu, D. (2015). Duality of singular linear systems of fractional nabla difference equations. Applied Mathematical Modelling, 39(14), 4180-4195. http://dx.doi.org/10.1016/j.apm.2014.12.039en_US
dc.identifier.doi10.1016/j.apm.2014.12.039
dc.identifier.endpage4195en_US
dc.identifier.issn0307-904X
dc.identifier.issn1872-8480
dc.identifier.issue14en_US
dc.identifier.scopus2-s2.0-84930986838
dc.identifier.scopusqualityQ1
dc.identifier.startpage4180en_US
dc.identifier.urihttps://doi.org/10.1016/j.apm.2014.12.039
dc.identifier.volume39en_US
dc.identifier.wosWOS:000356749200021
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Nabla Operatoren_US
dc.subjectInitial Conditionsen_US
dc.subjectSingular Systemsen_US
dc.subjectDifference Equationsen_US
dc.subjectLinear Discrete Time Systemen_US
dc.subjectDualityen_US
dc.titleDuality of singular linear systems of fractional nabla difference equationstr_TR
dc.titleDuality of Singular Linear Systems of Fractional Nabla Difference Equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: