Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions
dc.authorid | Laadjal, Zaid/0000-0003-1627-2898 | |
dc.authorscopusid | 57200968805 | |
dc.authorscopusid | 15622742900 | |
dc.authorwosid | Laadjal, Zaid/Aeq-4744-2022 | |
dc.contributor.author | Laadjal, Zaid | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.authorID | 234808 | tr_TR |
dc.date.accessioned | 2023-12-07T12:32:02Z | |
dc.date.available | 2023-12-07T12:32:02Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Laadjal, Zaid] Univ Ctr Illizi, Dept Math & Comp Sci, IIlizi 33000, Algeria; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
dc.description | Laadjal, Zaid/0000-0003-1627-2898 | en_US |
dc.description.abstract | In this work, the existence of solutions for nonlinear hybrid fractional integro-differential equations involving generalized proportional fractional (GPF) derivative of Caputo-Liouville-type and multi-term of GPF integrals of Reimann-Liouville type with Dirichlet boundary conditions is investigated. The analysis is accomplished with the aid of the Dhage's fixed point theorem with three operators and the lower regularized incomplete gamma function. Further, the uniqueness of solutions and their Ulam-Hyers-Rassias stability to a special case of the suggested hybrid problem are discussed. For the sake of corroborating the obtained results, an illustrative example is presented. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Laadjal, Zaid; Jarad, Fahd. (2023). "Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions", AIMS Mathematics, Vol.8, No.1, pp.1172-1194. | en_US |
dc.identifier.doi | 10.3934/math.2023059 | |
dc.identifier.endpage | 1194 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85140230075 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1172 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2023059 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000876666000002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 12 | |
dc.subject | Incomplete Gamma Function | en_US |
dc.subject | Caputo-Liouville Proportional Fractional Derivative | en_US |
dc.subject | Hybrid | en_US |
dc.subject | Fractional Integro-Differential Equation | en_US |
dc.subject | Fixed Point Theorem | en_US |
dc.subject | Ulam-Hyers Stability | en_US |
dc.title | Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions | tr_TR |
dc.title | Existence, Uniqueness and Stability of Solutions for Generalized Proportional Fractional Hybrid Integro-Differential Equations With Dirichlet Boundary Conditions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 10 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 |