On the composition of the distributions x(+)(lambda) and x(+)(mu)
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press inc Elsevier Science
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let F be a distribution and let f be a locally summable function. The distribution F(f) is defined as the neutrix limit of the sequence {F-n(f)}, where F-n(x) = F(x) * delta(n)(x) and {delta(n)(x)) is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function delta(x). The distributions (x(+)(mu) )(+)(lambda) are evaluated for lambda < 0, mu > 0 and lambda, lambda mu not equal -1, -2.... (c) 2005 Elsevier Inc. All rights reserved.
Description
Keywords
Distribution, Delta-Function, Composition Of Distributions, Neutrix, Neutrix Limit
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Fisher, B., Baleanu, D. (2006). On the composition of the distributions x(+)(lambda) and x(+)(mu). Journal of Mathematical Analysis and Applications, 318(1), 102-111. http://dx.doi.org/10.1016/j.jmaa.2005.05.022
WoS Q
Q2
Scopus Q
Q2
Source
Volume
318
Issue
1
Start Page
102
End Page
111