On the Non-Commutative Neutrix Product of the Distributions xλ + and xμ +
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Science & Business Media B.V.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let f and g be distributions and let gn = (g ∗ δn)(x), where δn(x) is a certain sequence converging to the Dirac delta function. The non-commutative neutrix product f ◦g of f and g is defined to be the limit of the sequence {fgn}, provided its limit h exists in the sense that N−lim n→∞ f(x)gn(x), ϕ(x) = h(x), ϕ(x) , for all functions ϕ in D. It is proved that (xλ + lnp x+) ◦ (xμ + lnq x+) = xλ+μ + lnp+q x+, (xλ − lnp x−) ◦ (xμ − lnq x−) = xλ+μ − lnp+q x−, for λ + μ < −1; λ, μ, λ + μ = −1, −2,... and p, q = 0, 1, 2.... .
Description
Keywords
Distribution, Delta Function, Product Of Distributions
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Fisher, B., Taş, K. (2006). On the Non-Commutative Neutrix Product of the Distributions xλ + and xμ+. Acta Mathematica Sinica, 22(6), 1639-1644. http://dx.doi.org/10.1007/s10114-005-0762-7
WoS Q
Scopus Q
Source
Acta Mathematica Sinica
Volume
22
Issue
6
Start Page
1639
End Page
1644