A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation
dc.authorid | Abbas, Dr. Muhammad/0000-0002-0491-1528 | |
dc.authorscopusid | 57224670808 | |
dc.authorscopusid | 43660960400 | |
dc.authorscopusid | 56421870300 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Yaseen, Muhammad/K-8160-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Abbas, Muhammad/K-8190-2019 | |
dc.contributor.author | Yaseen, Muhammad | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Abbas, Muhammad | |
dc.contributor.author | Nazir, Tahir | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2019-12-16T13:27:54Z | |
dc.date.available | 2019-12-16T13:27:54Z | |
dc.date.issued | 2017 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Yaseen, Muhammad; Abbas, Muhammad; Nazir, Tahir] Univ Sargodha, Dept Math, Univ Rd, Sargodha 40100, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkey | en_US |
dc.description | Abbas, Dr. Muhammad/0000-0002-0491-1528 | en_US |
dc.description.abstract | In this paper, we propose an efficient numerical scheme for the approximate solution of a time fractional diffusion-wave equation with reaction term based on cubic trigonometric basis functions. The time fractional derivative is approximated by the usual finite difference formulation, and the derivative in space is discretized using cubic trigonometric B-spline functions. A stability analysis of the scheme is conducted to confirm that the scheme does not amplify errors. Computational experiments are also performed to further establish the accuracy and validity of the proposed scheme. The results obtained are compared with finite difference schemes based on the Hermite formula and radial basis functions. It is found that our numerical approach performs superior to the existing methods due to its simple implementation, straightforward interpolation and very low computational cost. A convergence analysis of the scheme is also discussed. | en_US |
dc.description.publishedMonth | 9 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Yaseen, Muhammad; Abbas, Muhammad; Nazir, Tahir; Baleanu, Dumitru. (2017) A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation, Advances in Difference Equations, | en_US |
dc.identifier.doi | 10.1186/s13662-017-1330-z | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.scopus | 2-s2.0-85029171937 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1186/s13662-017-1330-z | |
dc.identifier.wos | WOS:000410027300001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springeropen | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 51 | |
dc.subject | Time Fractional Diffusion-Wave Equation | en_US |
dc.subject | Trigonometric Basis Functions | en_US |
dc.subject | Cubic Trigonometric B-Splines Method | en_US |
dc.subject | Stability | en_US |
dc.title | A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation | tr_TR |
dc.title | A Finite Difference Scheme Based on Cubic Trigonometric B-Splines for a Time Fractional Diffusion-Wave Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 44 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |