Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the existence of solution for fractional differential equations of order 3 < delta(1) <= 4

dc.authorid Jafari, Hossein/0000-0001-6807-6675
dc.authorid Khan, Hasib/0000-0002-7186-8435
dc.authorscopusid 7005872966
dc.authorscopusid 36013313700
dc.authorscopusid 55258301900
dc.authorscopusid 35226550700
dc.authorscopusid 26642881400
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Khan, Hasib/Afj-9925-2022
dc.authorwosid Jafari, Hossein/E-9912-2016
dc.authorwosid Agarwal, Ravi/Aeq-9823-2022
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Agarwal, Ravi P.
dc.contributor.author Khan, Hasib
dc.contributor.author Khan, Rahmat Ali
dc.contributor.author Jafari, Hossein
dc.contributor.other Matematik
dc.date.accessioned 2017-04-20T10:51:21Z
dc.date.available 2017-04-20T10:51:21Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele 76900, Romania; [Agarwal, Ravi P.] Texas A&I Univ, Dept Math, Kingsville, TX 78363 USA; [Khan, Hasib; Khan, Rahmat Ali] Univ Malakand, Dept Math, Dir Lower, Khybarpukhtunkh, Pakistan; [Khan, Hasib] Shaheed Benazir Bhutto Univ, Dir Upper, Khybarpukhtunkh, Pakistan; [Jafari, Hossein] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa; [Jafari, Hossein] Babol Univ Technol, Dept Math, Fac Basic Sci, Babol Sar, Iran en_US
dc.description Jafari, Hossein/0000-0001-6807-6675; Khan, Hasib/0000-0002-7186-8435 en_US
dc.description.abstract In this paper, we deal with a fractional differential equation of order delta(1) is an element of (3,4] with initial and boundary conditions, D-delta 1 psi(x) = -H(x,psi(x)), D-alpha 1 psi(1) = 0 = I3-delta 1 psi(0) = I4-delta 1 psi(0), psi(1) = Gamma(delta(1)-alpha(1))/Gamma(nu(1)) I delta 1-alpha 1 H(x,psi(x))(1), where x is an element of [0, 1], alpha(1) is an element of (1, 2], addressing the existence of a positive solution (EPS), where the fractional derivatives D-delta 1, D-alpha 1 are in the Riemann-Liouville sense of the order delta(1), alpha(1), respectively. The function H is an element of C([0, 1] x R, R) and I delta 1-alpha 1 H(x, psi(x))(1) = 1/Gamma(delta(1)-alpha(1)) integral(1)(0) (1 -z)(delta 1-alpha 1-1) H(z,psi(z)) dz. To this aim, we establish an equivalent integral form of the problem with the help of a Green's function. We also investigate the properties of the Green's function in the paper which we utilize in our main result for the EPS of the problem. Results for the existence of solutions are obtained with the help of some classical results. en_US
dc.description.publishedMonth 11
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, D...et al. (2015). On the existence of solution for fractional differential equations of order 3 < delta(1) <= 4. Advance in Difference Equations. http://dx.doi.org/10.1186/s13662-015-0686-1 en_US
dc.identifier.doi 10.1186/s13662-015-0686-1
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84948406209
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1186/s13662-015-0686-1
dc.identifier.wos WOS:000367903100001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 27
dc.subject Existence Of Positive Solutions en_US
dc.subject Green'S Function en_US
dc.subject Krasnosel'Skii Theorem en_US
dc.subject Arzela-Ascoli Theorem en_US
dc.title On the existence of solution for fractional differential equations of order 3 < delta(1) <= 4 tr_TR
dc.title On the Existence of Solution for Fractional Differential Equations of Order 3 &lt; Δ1 ≤ 4 en_US
dc.type Article en_US
dc.wos.citedbyCount 20
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: