Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Exact analytical solutions of fractional order telegraph equations via triple laplace transform

dc.authorscopusid 35226550700
dc.authorscopusid 57203666550
dc.authorscopusid 15622742900
dc.authorwosid Jarad, Fahd/T-8333-2018
dc.contributor.author Khan, Rahmat Ali
dc.contributor.author Jarad, Fahd
dc.contributor.author Li, Yongjin
dc.contributor.author Jarad, Fahd
dc.contributor.authorID 234808 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-04-14T12:07:28Z
dc.date.available 2022-04-14T12:07:28Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Khan, Rahmat Ali] Univ Malakand, Dept Math, Chakadara Dirl, Pakistan; [Li, Yongjin] Sun Yat Sen Univ, Dept Math, Guangzhou, Peoples R China; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey en_US
dc.description.abstract In this paper, we study initial/boundary value problems for 1 + 1 dimensional and 1 + 2 dimensional fractional order telegraph equations. We develop the technique of double and triple Laplace transforms and obtain exact analytical solutions of these problems. The techniques we develop are new and are not limited to only telegraph equations but can be used for exact solutions of large class of linear fractional order partial differential equations en_US
dc.description.publishedMonth 7
dc.description.sponsorship National Natural Science Foundation of China, NSFC, (11571378) en_US
dc.description.sponsorship National Natural Science Foundation of China en_US
dc.description.sponsorship Acknowledgments. This research has been supported by the National Natural Science Foundation of China (11571378) . The research visit to Sun Yet Sen University was supported by National Natural Science Foundation of China. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Khan, Rahmat Ali; Li, Yongjin; Jarad, Fahd (2021). "Exact analytical solutions of fractional order telegraph equations via triple laplace transform", Discrete and Continuous Dynamical Systems - Series S, Vol. 14, No. 7, pp. 2387-2397. en_US
dc.identifier.doi 10.3934/dcdss.2020427
dc.identifier.endpage 2397 en_US
dc.identifier.issn 1937-1632
dc.identifier.issn 1937-1179
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85109175011
dc.identifier.scopusquality Q2
dc.identifier.startpage 2387 en_US
dc.identifier.uri https://doi.org/10.3934/dcdss.2020427
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:000661878900023
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.ispartof Discrete and Continuous Dynamical Systems - Series S en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 3
dc.subject Initial en_US
dc.subject Boundary Value Problems en_US
dc.subject Double And Triple Laplace Transform en_US
dc.subject Exact Solutions en_US
dc.subject Fractional Telegraph Equations en_US
dc.title Exact analytical solutions of fractional order telegraph equations via triple laplace transform tr_TR
dc.title Exact Analytical Solutions of Fractional Order Telegraph Equations Via Triple Laplace Transform en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
362.68 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: